cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A008346 a(n) = Fibonacci(n) + (-1)^n.

Original entry on oeis.org

1, 0, 2, 1, 4, 4, 9, 12, 22, 33, 56, 88, 145, 232, 378, 609, 988, 1596, 2585, 4180, 6766, 10945, 17712, 28656, 46369, 75024, 121394, 196417, 317812, 514228, 832041, 1346268, 2178310, 3524577, 5702888, 9227464, 14930353, 24157816, 39088170, 63245985, 102334156
Offset: 0

Views

Author

Keywords

Comments

Diagonal sums of A059260. - Paul Barry, Oct 25 2004
The absolute value of the Euler characteristic of the Boolean complex of the Coxeter group A_n. - Bridget Tenner, Jun 04 2008
a(n) is the number of compositions (ordered partitions) of n into two sorts of 2's and one sort of 3's. Example: the a(5)=4 compositions of 5 are 2+3, 2'+3, 3+2 and 3+2'. - Bob Selcoe, Jun 21 2013
Let r = 0.70980344286129... denote the rabbit constant A014565. The sequence 2^a(n) gives the simple continued fraction expansion of the constant r/2 = 0.35490172143064565732 ... = 1/(2^1 + 1/(2^0 + 1/(2^2 + 1/(2^1 + 1/(2^4 + 1/(2^4 + 1/(2^9 + 1/(2^12 + ... )))))))). Cf. A099925. - Peter Bala, Nov 06 2013
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [0, 1, 1; 1, 0, 1; 1, 0, 0] or of the 3 X 3 matrix [0, 1, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
a(n) is the number of growing self-avoiding walks with n+3 edges on the grid graph of integer points (x,y) with x >= 0 and y in {0, 1} and with a trapped endpoint. - Jay Pantone, Jul 26 2024

Examples

			The Boolean complex of Coxeter group A_4 is homotopy equivalent to the wedge of 2 spheres S^3, which has Euler characteristic 1 - 2 = -1.
		

Crossrefs

Programs

Formula

G.f.: 1/(1 - 2*x^2 - x^3).
a(n) = 2*a(n-2) + a(n-3).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} (-1)^(n-k-j)binomial(j, k). Diagonal sums of A059260. - Paul Barry, Sep 23 2004
From Paul Barry, Oct 04 2004: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)2^(3k-n).
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)2^k(1/2)^(n-2k). (End)
From Paul Barry, Oct 25 2004: (Start)
G.f.: 1/((1+x)*(1-x-x^2)).
a(n) = Sum_{k=0..n} binomial(n-k-1, k). (End)
a(n) = |1 + (-1)^(n-1)*Fibonacci(n-1)|. - Bridget Tenner, Jun 04 2008
a(n) = A000045(n) + A033999(n). - Michel Marcus, Nov 14 2013
a(n) = Fibonacci(n+1) - a(n-1), with a(0) = 1. - Franklin T. Adams-Watters, Mar 26 2014
a(n) = b(n+1) where b(n) = b(n-1) + b(n-2) + (-1)^(n+1), b(0) = 0, b(1) = 1. See also A098600. - Richard R. Forberg, Aug 30 2014
a(n) = b(n+2) where b(n) = Sum_{k=1..n} b(n-k)*A000931(k+1), b(0) = 1. - J. Conrad, Apr 19 2017
a(n) = Sum_{j=n+1..2*n+1} F(j) mod Sum_{j=0..n} F(j) for n > 2 and F(j)=A000045(j). - Art Baker, Jan 20 2019

A098600 a(n) = Fibonacci(n-1) + Fibonacci(n+1) - (-1)^n.

Original entry on oeis.org

1, 2, 2, 5, 6, 12, 17, 30, 46, 77, 122, 200, 321, 522, 842, 1365, 2206, 3572, 5777, 9350, 15126, 24477, 39602, 64080, 103681, 167762, 271442, 439205, 710646, 1149852, 1860497, 3010350, 4870846, 7881197, 12752042, 20633240, 33385281, 54018522
Offset: 0

Views

Author

Paul Barry, Sep 17 2004

Keywords

Comments

Row sums of A098599.

Crossrefs

Programs

  • Magma
    [Fibonacci(n-1) + Fibonacci(n+1) - (-1)^n: n in [0..50]]; // Vincenzo Librandi, Aug 31 2014
    
  • Mathematica
    Table[-(-1)^n + LucasL[n], {n, 0, 39}] (* Alonso del Arte, Aug 30 2014 *)
    Table[Fibonacci[n - 1] + Fibonacci[n + 1] - (-1)^n, {n, 0, 40}] (* Vincenzo Librandi, Aug 31 2014 *)
    CoefficientList[ Series[-(1 + 2x)/(-1 + 2x^2 + x^3), {x, 0, 40}], x] (* or *)
    LinearRecurrence[{0, 2, 1}, {1, 2, 2}, 40] (* Robert G. Wilson v, Mar 09 2018 *)
  • PARI
    a(n)=fibonacci(n-1) + fibonacci(n+1) - (-1)^n; \\ Joerg Arndt, Oct 18 2014
    
  • PARI
    Vec((1+2*x)/((1+x)*(1-x-x^2)) + O(x^30)) \\ Colin Barker, Jun 03 2016
    
  • SageMath
    [lucas_number2(n,1,-1) -(-1)^n for n in range(51)] # G. C. Greubel, Mar 26 2024

Formula

G.f.: (1+2*x) / ((1+x)*(1-x-x^2)).
a(n) = Sum_{k = 0..n} binomial(k, n-k) + binomial(k-1, n-k-1).
a(n) = A020878(n) - 1 = A001350(n) + 1.
a(n) = Lucas(n) - (-1)^n. - Paul Barry, Dec 01 2004
a(n) = A181716(n+1). - Richard R. Forberg, Aug 30 2014
a(n) = [x^n] ( (1 + x + sqrt(1 + 6*x + 5*x^2))/2 )^n. exp( Sum_{n >= 1} a(n)*x^n/n ) = Sum_{n >= 0} Fibonacci(n+2)*x^n. Cf. A182143. - Peter Bala, Jun 29 2015
From Colin Barker, Jun 03 2016: (Start)
a(n) = (-(-1)^n + ((1/2)*(1-sqrt(5)))^n + ((1/2)*(1+sqrt(5)))^n).
a(n) = 2*a(n-2) + a(n-3) for n > 2. (End)
E.g.f.: (2*exp(3*x/2)*cosh(sqrt(5)*x/2) - 1)*exp(-x). - Ilya Gutkovskiy, Jun 03 2016
a(n) = A014217(n) + A000035(n). - Paul Curtz, Jul 27 2023
Showing 1-2 of 2 results.