cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A002478 Bisection of A000930.

Original entry on oeis.org

1, 1, 3, 6, 13, 28, 60, 129, 277, 595, 1278, 2745, 5896, 12664, 27201, 58425, 125491, 269542, 578949, 1243524, 2670964, 5736961, 12322413, 26467299, 56849086, 122106097, 262271568, 563332848, 1209982081, 2598919345, 5582216355, 11990037126, 25753389181
Offset: 0

Views

Author

Keywords

Comments

Number of ways to tile a 3 X n region with 1 X 1, 2 X 2 and 3 X 3 tiles.
Number of ternary words with subwords (0,0), (0,1) and (1,1) not allowed. - Olivier Gérard, Aug 28 2012
Diagonal sums of A063967. - Paul Barry, Nov 09 2005
Row sums of number triangle A116088. - Paul Barry, Feb 04 2006
Sequence is identical to its second differences negated, minus the first 3 terms. - Paul Curtz, Feb 10 2008
a(n) = term (3,3) in the 3 X 3 matrix [0,1,0; 0,0,1; 1,2,1]^n. - Gary W. Adamson, May 30 2008
a(n)/a(n-1) tends to 2.147899035..., an eigenvalue of the matrix and a root to x^3 - x^2 - 2x - 1 = 0. - Gary W. Adamson, May 30 2008
INVERT transform of (1, 2, 1, 0, 0, 0, ...) = (1, 3, 6, 13, 28, ...); such that (1, 2, 1, 0, 0, 0, ...) convolved with (1, 1, 3, 6, 13, 28, 0, 0, 0, ...) shifts to the left. - Gary W. Adamson, Apr 18 2010
a(n) is the top left entry in the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 0, 1; 1, 0, 0] or of the 3 X 3 matrix [1, 1, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014

Examples

			a(3)=6 as there is one tiling of a 3 X 3 region with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 1 tiling consisting of the 3 X 3 tile.
		

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 322.
  • S. Heubach, Tiling an m X n Area with Squares of Size up to k X k (m<=5), Congressus Numerantium 140 (1999), pp. 43-64.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000930, A054856, A054857, A025234, A078007, A078039, A226546, A077936 (INVERT transform), A008346 (inverse INVERT transform).

Programs

  • Magma
    I:=[1,1,3]; [n le 3 select I[n] else Self(n-1) +2*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Apr 14 2023
    
  • Mathematica
    f[A_]:= Module[{til = A}, AppendTo[til, A[[-1]] + 2A[[-2]] + A[[-3]]]]; NumOfTilings[ n_ ]:= Nest[ f, {1,1,3}, n-2]; NumOfTilings[30]
    LinearRecurrence[{1,2,1},{1,1,3},40] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
    CoefficientList[Series[1/(1-x-2x^2-x^3),{x,0,40}],x] (* Harvey P. Dale, Oct 17 2024 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,2,1]^n*[1;1;3])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    @CachedFunction
    def a(n): # A002478
        if (n<3): return (1,1,3)[n]
        else: return sum(binomial(2,j)*a(n-j) for j in range(1,4))
    [a(n) for n in (0..40)] # G. C. Greubel, Apr 14 2023

Formula

G.f.: 1 / (1-x-2*x^2-x^3). [Simon Plouffe in his 1992 dissertation.]
a(n) = a(n-1) + 2*a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} binomial(2*n-2*k, k). - Paul Barry, Nov 13 2004
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(j, n-k-j)*C(j, k). - Paul Barry, Nov 09 2005
a(n) = Sum_{k=0..n} C(2*k,n-k) = Sum_{k=0..n} C(n,k)*C(3*k,n)/C(3*k,k). - Paul Barry, Feb 04 2006
a(n) = A000930(n) + 2*Sum_{i=0..n-2} a(i)*A000930(n-2-i). - Michael Tulskikh, Jun 07 2020

Extensions

Additional comments from Silvia Heubach (silvi(AT)cine.net), Apr 21 2000

A052952 a(n) = Fibonacci(n+2) - (1-(-1)^n)/2.

Original entry on oeis.org

1, 1, 3, 4, 8, 12, 21, 33, 55, 88, 144, 232, 377, 609, 987, 1596, 2584, 4180, 6765, 10945, 17711, 28656, 46368, 75024, 121393, 196417, 317811, 514228, 832040, 1346268, 2178309, 3524577, 5702887, 9227464, 14930352, 24157816, 39088169, 63245985, 102334155
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals row sums of triangle A173284. - Gary W. Adamson, Feb 14 2010
The Kn21 sums (see A180662 for definition) of the 'Races with Ties' triangle A035317 produce this sequence. - Johannes W. Meijer, Jul 20 2011
a(n-1), for n >= 1, gives the number of compositions of n with relative prime parts, and parts not exceeding 2. See the row sums of triangle A030528 where for even n the leading 1 is missing. - Wolfdieter Lang, Jul 27 2023

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 8*x^4 + 12*x^5 + 21*x^6 + 33*x^7 + ...
		

Crossrefs

Partial sums of A008346, first differences of A129696.
Cf. also A000032, A000045, A030528.

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+2) -(1-(-1)^n)/2); # G. C. Greubel, Jul 10 2019
  • Haskell
    a052952 n = a052952_list !! n
    a052952_list = 1 : 1 : zipWith (+)
       a059841_list (zipWith (+) a052952_list $ tail a052952_list)
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Magma
    [Fibonacci(n+2)-(1-(-1)^n)/2: n in [0..40]]; // Vincenzo Librandi, Dec 02 2016
    
  • Maple
    A052952 :=proc(n)
        option remember;
        local t1;
        if n <= 1 then
            return 1 ;
        fi:
        if n mod 2 = 1 then
            t1:=0
        else
            t1:=1;
        fi:
        procname(n-1)+procname(n-2)+t1;
    end proc;
    seq(A052952(n), n=0..40) ; # N. J. A. Sloane, May 25 2008
  • Mathematica
    Table[Fibonacci[n+2] -(1-(-1)^n)/2, {n, 0, 40}] (* Vincenzo Librandi, Dec 02 2016 *)
    Sum[(-1)^k*Fibonacci[Range[2,41], 1-k], {k,0,1}] (* G. C. Greubel, Oct 21 2019 *)
    CoefficientList[Series[1/((1-x-x^2)*(1-x^2)),{x,0,40}],x] (* Harvey P. Dale, Sep 12 2020 *)
  • PARI
    {a(n) = fibonacci(n+2) - n%2};
    
  • Sage
    [fibonacci(n+2) -(1-(-1)^n)/2 for n in (0..40)] # G. C. Greubel, Jul 10 2019
    

Formula

G.f.: 1/((1-x-x^2)*(1-x^2)).
a(n) = A074331(n+1).
a(n) = A054450(n+1, 1) (second column of triangle).
a(n) = 2*a(n-2) + a(n-3) + 1, with a(0)=1, a(1)=1, a(2)=3.
a(n) = Sum_{alpha=RootOf(-1+z+z^2)} (3+alpha)*alpha^(-1-n)/3 - Sum_{beta=RootOf(-1+z^2)} beta^(-1-n)/2.
a(2*k) = Sum_{j=0..k} F(2*j+1) = F(2*(k+1)) for k >= 0; a(2*k-1) = Sum_{j=0..k} F(2*j) = F(2*k+1)-1 for k >= 1 (F = A000045, Fibonacci numbers).
a(n) = a(n-1) + a(n-2) + (1+(-1)^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+1, k). - Paul Barry, Oct 23 2004
a(n) = floor(phi^(n+2) / sqrt(5)), where phi is the golden ratio: phi = (1+sqrt(5))/2. - Reinhard Zumkeller, Apr 19 2005
a(n) = Fibonacci(n+1) + a(n-2) with n>1, a(0)=a(1)=1. - Zerinvary Lajos, Mar 17 2008
a(n) = floor(Fibonacci(n+3)^2/Fibonacci(n+4)). - Gary Detlefs, Nov 29 2010
a(n) = (A001595(n+3) - A066983(n+4))/2. - Gary Detlefs, Dec 19 2010
a(4*n) = F(4*n+2); a(4*n+1) = F(4*n+3) - 1; a(4*n+2) = F(4*n+4); a(4*n+3) = F(4*n+5) - 1. - Johannes W. Meijer, Jul 20 2011
a(n+1) = a(n) + a(n-1) + A059841(n+1). - Reinhard Zumkeller, Jan 06 2012
a(n) = floor(|F((1+i)*(n+2))|), n >= 0, with the complex Fibonacci function F: C -> C, z -> F(z) with F(z) := (exp(log(phi)*z) - exp(i*Pi*z)*exp(-log(phi)*z))/(2*phi-1) with the modulus |z|, the imaginary unit i and the golden section phi:=(1+sqrt(5))/2. A Conjecture: For F(z) see, e.g., the T. Koshy reference. ch. 45, p. 523, where F is called f, given in A000045. - Wolfdieter Lang, Jul 24 2012
5*a(n) = (L(n+3)-1)*(L(n+4)+3) -14 -Sum_{k=0..n} L(k+1)*L(k+5) = (L(n+3)-1)*(L(n+4)+3) -L(2*n+7) +A168309(n), where L=A000032. - J. M. Bergot, Jun 13 2014
a(n) = floor(phi*Fibonacci(n+1)), where phi is the golden section. - Michel Dekking, Dec 02 2016
a(n) = -(-1)^n * a(-4-n) for all n in Z. - Michael Somos, Dec 03 2016
a(n) = Sum_{k=0..n} Sum_{i=0..n} C(n-k-1,k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = floor(1/(Sum_{k>=n+4} 1/Fibonacci(k))) [Ohtsuka and Nakamura]. - Michel Marcus, Aug 09 2018
a(n) = floor(abs(chebyshevU(n/2, 3/2))). - Federico Provvedi, Feb 23 2022
E.g.f.: exp(x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/5 - sinh(x). - Stefano Spezia, Mar 09 2024

Extensions

Additional formulas and more terms from Wolfdieter Lang, May 02 2000
Better description from Olivier Gérard, Jun 05 2001

A059260 Triangle read by rows giving coefficient T(i,j) of x^i y^j in 1/(1-y-x*y-x^2) = 1/((1+x)(1-x-y)) for (i,j) = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 1, 2, 4, 3, 1, 0, 3, 6, 7, 4, 1, 1, 3, 9, 13, 11, 5, 1, 0, 4, 12, 22, 24, 16, 6, 1, 1, 4, 16, 34, 46, 40, 22, 7, 1, 0, 5, 20, 50, 80, 86, 62, 29, 8, 1, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 0, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2001

Keywords

Comments

Coefficients of the (left, normalized) shifted cyclotomic polynomial. Or, coefficients of the basic n-th q-series for q=-2. Indeed, let Y_n(x) = Sum_{k=0..n} x^k, having as roots all the n-th roots of unity except for 0; then coefficients in x of (-1)^n Y_n(-x-1) give exactly the n-th row of A059260 and a practical way to compute it. - Olivier Gérard, Jul 30 2002
The maximum in the (2n)-th row is T(n,n), which is A026641; also T(n,n) ~ (2/3)*binomial(2n,n). The maximum in the (2n-1)-th row is T(n-1,n), which is A014300 (but T does not have the same definition as in A026637); also T(n-1,n) ~ (1/3)*binomial(2n,n). Here is a generalization of the formula given in A026641: T(i,j) = Sum_{k=0..j} binomial(i+k-x,j-k)*binomial(j-k+x,k) for all x real (the proof is easy by induction on i+j using T(i,j) = T(i-1,j) + T(i,j-1)). - Claude Morin, May 21 2002
The second greatest term in the (2n)-th row is T(n-1,n+1), which is A014301; the second greatest term in the (2n+1)-th row is T(n+1,n) = 2*T(n-1,n+1), which is 2*A014301. - Claude Morin
Diagonal sums give A008346. - Paul Barry, Sep 23 2004
Riordan array (1/(1-x^2), x/(1-x)). As a product of Riordan arrays, factors into the product of (1/(1+x),x) and (1/(1-x),1/(1-x)) (binomial matrix). - Paul Barry, Oct 25 2004
Signed version is A239473 with relations to partial sums of sequences. - Tom Copeland, Mar 24 2014
From Robert Coquereaux, Oct 01 2014: (Start)
Columns of the triangle (cf. Example below) give alternate partial sums along nw-se diagonals of the Pascal triangle, i.e., sequences A000035, A004526, A002620 (or A087811), A002623 (or A173196), A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808, etc.
The dimension of the space of closed currents (distributional forms) of degree p on Gr(n), the Grassmann algebra with n generators, equivalently, the dimension of the space of Gr(n)-valued symmetric multilinear forms with vanishing graded divergence, is V(n,p) = 2^n T(p,n-1) - (-1)^p.
If p is odd V(n,p) is also the dimension of the cyclic cohomology group of order p of the Z2 graded algebra Gr(n).
If p is even the dimension of this cohomology group is V(n,p)+1.
Cf. A193844. (End)
From Peter Bala, Feb 07 2024: (Start)
The following remarks assume the row indexing starts at n = 1.
The sequence of row polynomials R(n,x), beginning R(1,x) = 1, R(2,x) = x, R(3,x) = 1 + x + x^2 , ..., is a strong divisibility sequence of polynomials in the ring Z[x]; that is, for all positive integers n and m, poly_gcd( R(n,x), R(m,x)) = R(gcd(n, m), x) - apply Norfleet (2005), Theorem 3. Consequently, the polynomial sequence {R(n,x): n >= 1} is a divisibility sequence; that is, if n divides m then R(n,x) divides R(m,x) in Z[x]. (End)
From Miquel A. Fiol, Oct 04 2024: (Start)
For j>=1, T(i,j) is the independence number of the (i-j)-supertoken graph FF_(i-j)(S_j) of the star graph S_j with j points.
(Given a graph G on n vertices and an integer k>=1, the k-supertoken (or reduced k-th power) FF_k(G) of G has vertices representing configurations of k indistinguishable tokens in the (not necessarily different) vertices of G, with two configurations being adjacent if one can be obtained from the other by moving one token along an edge. See an example below.)
Following the suggestion of Peter Munn, the k-supertoken graph FF_k(S_j) can also be defined as follows: Consider the Lattice graph L(k,j), whose vertices are the k^j j-vectors with elements in the set {0,..,k-1}, two being adjacent if they differ in just one coordinate by one unity. Then, FF_k(S_j) is the subgraph of L(k+1,j) induced by the vertices at distance at most k from (0,..,0). (End)

Examples

			Triangle begins
  1;
  0,  1;
  1,  1,  1;
  0,  2,  2,  1;
  1,  2,  4,  3,  1;
  0,  3,  6,  7,  4,  1;
  1,  3,  9, 13, 11,  5,  1;
  0,  4, 12, 22, 24, 16,  6,  1;
  1,  4, 16, 34, 46, 40, 22,  7,  1;
  0,  5, 20, 50, 80, 86, 62, 29,  8,  1;
Sequences obtained with _Miquel A. Fiol_'s Sep 30 2024 formula of A(n,c1,c2) for other values of (c1,c2). (In the table, rows are indexed by c1=0..6 and columns by c2=0..6):
A000007  A000012  A000027  A025747  A000292* A000332* A000389*
A059841  A008619  A087811* A002623  A001752  A001753  A001769
A193356  A008794* A005993  A005994  -------  -------  -------
-------  -------  -------  A005995  A018210  -------  A052267
-------  -------  -------  -------  A018211  A018212  -------
-------  -------  -------  -------  -------  A018213  A018214
-------  -------  -------  -------  -------  -------  A062136
*requires offset adjustment.
The 2-supertoken FF_2(S_3) of the star graph S_3 with central vertex 1 and peripheral vertices 2,3,4. (The vertex `ij' of FF_2(S_3) represents the configuration of one token in `ì' and the other token in `j'). The T(5,3)=7 independent vertices are 22, 24, 44, 23, 11, 34, and 33.
     22--12---24---14---44
          | \    / |
         23   11   34
            \  |  /
              13
               |
              33
		

Crossrefs

Cf. A059259. Row sums give A001045.
Seen as a square array read by antidiagonals this is the coefficient of x^k in expansion of 1/((1-x^2)*(1-x)^n) with rows A002620, A002623, A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808 etc. (allowing for signs). A058393 would then effectively provide the table for nonpositive n. - Henry Bottomley, Jun 25 2001

Programs

  • Maple
    read transforms; 1/(1-y-x*y-x^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
  • Mathematica
    t[n_, k_] := Sum[ (-1)^(n-j)*Binomial[j, k], {j, 0, n}]; Flatten[ Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Oct 20 2011, after Paul Barry *)
  • PARI
    T(n, k) = sum(j=0, n, (-1)^(n - j)*binomial(j, k));
    for(n=0, 12, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return sum((-1)**(n - j)*binomial(j, k) for j in range(n + 1))
    for n in range(13): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
  • Sage
    def A059260_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k+1)*prec(n+1, n-k+1) for k in (1..n)]
    for n in (1..9): print(A059260_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: 1/(1-y-x*y-x^2) = 1 + y + x^2 + xy + y^2 + 2x^2y + 2xy^2 + y^3 + ...
E.g.f: (exp(-t)+(x+1)*exp((x+1)*t))/(x+2). - Tom Copeland, Mar 19 2014
O.g.f. (n-th row): ((-1)^n+(x+1)^(n+1))/(x+2). - Tom Copeland, Mar 19 2014
T(i, 0) = 1 if i is even or 0 if i is odd, T(0, i) = 1 and otherwise T(i, j) = T(i-1, j) + T(i, j-1); also T(i, j) = Sum_{m=j..i+j} (-1)^(i+j+m)*binomial(m, j). - Robert FERREOL, May 17 2002
T(i, j) ~ (i+j)/(2*i+j)*binomial(i+j, j); more precisely, abs(T(i, j)/binomial(i+j, j) - (i+j)/(2*i+j) )<=1/(4*(i+j)-2); the proof is by induction on i+j using the formula 2*T(i, j) = binomial(i+j, j)+T(i, j-1). - Claude Morin, May 21 2002
T(n, k) = Sum_{j=0..n} (-1)^(n-j)binomial(j, k). - Paul Barry, Aug 25 2004
T(n, k) = Sum_{j=0..n-k} binomial(n-j, j)*binomial(j, n-k-j). - Paul Barry, Jul 25 2005
Equals A097807 * A007318. - Gary W. Adamson, Feb 21 2007
Equals A128173 * A007318 as infinite lower triangular matrices. - Gary W. Adamson, Feb 17 2007
Equals A130595*A097805*A007318 = (inverse Pascal matrix)*(padded Pascal matrix)*(Pascal matrix) = A130595*A200139. Inverse is A097808 = A130595*(padded A130595)*A007318. - Tom Copeland, Nov 14 2016
T(i, j) = binomial(i+j, j)-T(i-1, j). - Laszlo Major, Apr 11 2017
Recurrence for row polynomials (with row indexing starting at n = 1): R(n,x) = x*R(n-1,x) + (x + 1)*R(n-2,x) with R(1,x) = 1 and R(2,x) = x. - Peter Bala, Feb 07 2024
From Miquel A. Fiol, Sep 30 2024: (Start)
The triangle can be seen as a slice of a 3-dimensional table that links it to well-known sequences as follows.
The j-th column of the triangle, T(i,j) for i >= j, equals A(n,c1,c2) = Sum_{k=0..floor(n/2)} binomial(c1+2*k-1,2*k)*binomial(c2+n-2*k-1,n-2*k) when c1=1, c2=j, and n=i-j.
This gives T(i,j) = Sum_{k=0..floor((i-j)/2)} binomial(i-2*k-1, j-1). For other values of (c1,c2), see the example below. (End)

Extensions

Formula corrected by Philippe Deléham, Jan 11 2014

A055588 a(n) = 3*a(n-1) - a(n-2) - 1 with a(0) = 1 and a(1) = 2.

Original entry on oeis.org

1, 2, 4, 9, 22, 56, 145, 378, 988, 2585, 6766, 17712, 46369, 121394, 317812, 832041, 2178310, 5702888, 14930353, 39088170, 102334156, 267914297, 701408734, 1836311904, 4807526977, 12586269026, 32951280100, 86267571273
Offset: 0

Views

Author

Wolfdieter Lang, May 30 2000; Barry E. Williams, Jun 04 2000

Keywords

Comments

Number of directed column-convex polyominoes with area n+2 and having two cells in the bottom row. - Emeric Deutsch, Jun 14 2001
a(n) is the length of the list generated by the substitution: 3->3, 4->(3,4,6), 6->(3,4,6,6): {3, 4}, {3, 3, 4, 6}, {3, 3, 3, 4, 6, 3, 4, 6, 6}, {3, 3, 3, 3, 4, 6, 3, 4, 6, 6, 3, 3, 4, 6, 3, 4, 6, 6, 3, 4, 6, 6}, etc. - Wouter Meeussen, Nov 23 2003
Equals row sums of triangle A144955. - Gary W. Adamson, Sep 27 2008
Equals the INVERT transform of A034943 and the INVERTi transform of A094790. - Gary W. Adamson, Apr 01 2011

Crossrefs

Partial sums of A001519.
Apart from the first term, same as A052925.

Programs

  • GAP
    List([0..40], n-> Fibonacci(2*n)+1 ); # G. C. Greubel, Jun 06 2019
  • Magma
    [Fibonacci(2*n)+1: n in [0..40]]; // Vincenzo Librandi, Sep 30 2017
    
  • Maple
    g:=z/(1-3*z+z^2): gser:=series(g, z=0, 43): seq(abs(coeff(gser, z, n)+1), n=0..27); # Zerinvary Lajos, Mar 22 2009
  • Mathematica
    Table[Fibonacci[2n] +1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -4, 1}, {1, 2, 4}, 40] (* Vincenzo Librandi, Sep 30 2017 *)
  • PARI
    vector(40, n, n--; fibonacci(2*n)+1) \\ G. C. Greubel, Jun 06 2019
    
  • Sage
    [lucas_number1(n,3,1)+1 for n in range(40)] # Zerinvary Lajos, Jul 06 2008
    

Formula

a(n) = (((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n)/sqrt(5) + 1.
a(n) = Sum_{m=0..n} A055587(n, m) = 1 + A001906(n).
G.f.: (1 - 2*x)/((1 - 3*x + x^2)*(1-x)).
From Paul Barry, Oct 07 2004: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3);
a(n) = Sum_{k=0..floor(n/3)} binomial(n-k, 2*k)2^(n-3*k). (End)
From Paul Barry, Oct 26 2004: (Start)
a(n) = A001906(n) + 1.
a(n) = Sum_{k=0..n} Fibonacci(2*k+2)*(2*0^(n-k) - 1).
a(n) = A008346(2*n). (End)
a(n) = Sum_{k=0..2*n+1} ((-1)^(k+1))*Fibonacci(k). - Michel Lagneau, Feb 03 2014
E.g.f.: cosh(x) + sinh(x) + 2*exp(3*x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, May 14 2024
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/10) (A019827). - Amiram Eldar, Nov 28 2024

A099036 a(n) = 2^n - Fibonacci(n).

Original entry on oeis.org

1, 1, 3, 6, 13, 27, 56, 115, 235, 478, 969, 1959, 3952, 7959, 16007, 32158, 64549, 129475, 259560, 520107, 1041811, 2086206, 4176593, 8359951, 16730848, 33479407, 66987471, 134021310, 268117645, 536356683, 1072909784, 2146137379, 4292788987, 8586410014
Offset: 0

Views

Author

Paul Barry, Sep 23 2004

Keywords

Comments

Binomial transform of (-1)^n*A000045(n) + 1 = (-1)^n*A008346(n).
Number of compositions of n+1 that contain 1 as a part. - Vladeta Jovovic, Sep 26 2004
Generated from iterates of M * [1,1,1,...], where M = a tridiagonal matrix with [0,1,1,1,...] as the main diagonal, [1,1,1,...] as the superdiagonal and [1,0,0,0,...] as the subdiagonal. - Gary W. Adamson, Jan 05 2009
Starting with offset 1, generated from iterates of M * [1,1,1,...], M*ANS -> M*ANS,...; where M = = a tridiagonal matrix with (0,1,1,1,...) in the main diagonal, (1,1,1,...) in the superdiagonal and (1,0,0,0,...) in the subdiagonal. - Gary W. Adamson, Jan 04 2009
An elephant sequence, see A175655. For the central square 24 A[5] vectors, with decimal values between 11 and 416, lead to this sequence (without the first leading 1). For the corner squares these vectors lead to the companion sequence A027934 (without the leading 0). - Johannes W. Meijer, Aug 15 2010
Number of fixed points in all compositions of n+1. - Alois P. Heinz, Jun 18 2020

Crossrefs

Programs

Formula

G.f.: (1 - x)^2/((1 - 2*x)*(1 - x - x^2)).
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3).
a(n) = A101220(1,2,n+1) - A101220(1,2,n). - Ross La Haye, Aug 05 2005
a(n) = A000079(n+1) - A117591(n) = A117591(n) - 2 * A000045(n). - Reinhard Zumkeller, Aug 15 2013
a(n) = Sum_{t_1+2*t_2+...+n*t_n = n} multinomial(1+t_1+t_2+...+t_n, 1+t_1, t_2, ..., t_n). - Mircea Merca, Oct 09 2013
a(n) = Sum_{k=0..A003056(n+1)} k * A238350(n+1,k). - Alois P. Heinz, Jun 18 2020
E.g.f.: cosh(2*x) + sinh(2*x) - 2*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Jan 31 2023

Extensions

More terms from Ross La Haye, Aug 05 2005

A119282 Alternating sum of the first n Fibonacci numbers.

Original entry on oeis.org

0, -1, 0, -2, 1, -4, 4, -9, 12, -22, 33, -56, 88, -145, 232, -378, 609, -988, 1596, -2585, 4180, -6766, 10945, -17712, 28656, -46369, 75024, -121394, 196417, -317812, 514228, -832041, 1346268, -2178310, 3524577, -5702888, 9227464, -14930353, 24157816, -39088170, 63245985, -102334156, 165580140, -267914297, 433494436, -701408734, 1134903169, -1836311904, 2971215072, -4807526977, 7778742048
Offset: 0

Views

Author

Stuart Clary, May 13 2006

Keywords

Comments

Apart from signs, same as A008346.
Natural bilateral extension (brackets mark index 0): ..., 88, 54, 33, 20, 12, 7, 4, 2, 1, 0, [0], -1, 0, -2, 1, -4, 4, -9, 12, -22, 3, ... This is A000071-reversed followed by A119282.
Alternating sums of rows of the triangle in A141169. - Reinhard Zumkeller, Mar 22 2011

Crossrefs

Programs

  • Magma
    [0] cat [(&+[(-1)^k*Fibonacci(k):k in [1..n]]): n in [1..30]]; // G. C. Greubel, Jan 17 2018
  • Mathematica
    FoldList[#1 - Fibonacci@ #2 &, -Range@ 50] (* Michael De Vlieger, Jan 27 2016 *)
    Accumulate[Table[(-1)^n Fibonacci[n], {n, 0, 49}]] (* Alonso del Arte, Apr 25 2017 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^k*fibonacci(k)); \\ Michel Marcus, Jan 27 2016
    

Formula

Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k = 1..n} (-1)^k F(k).
Closed form: a(n) = (-1)^n F(n-1) - 1 = (-1)^n A008346(n-1).
Recurrence: a(n) - 2 a(n-2) + a(n-3)= 0.
G.f.: A(x) = -x/(1 - 2 x^2 + x^3) = -x/((1 - x)(1 + x - x^2)).
Another recurrence: a(n) = a(n-2) - a(n-1) - 1. - Rick L. Shepherd, Aug 12 2009

A104763 Triangle read by rows: Fibonacci(1), Fibonacci(2), ..., Fibonacci(n) in row n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 5, 1, 1, 2, 3, 5, 8, 1, 1, 2, 3, 5, 8, 13, 1, 1, 2, 3, 5, 8, 13, 21, 1, 1, 2, 3, 5, 8, 13, 21, 34, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233
Offset: 1

Views

Author

Gary W. Adamson, Mar 23 2005

Keywords

Comments

Triangle of A104762, Fibonacci sequence in each row starts from the right.
The triangle or chess sums, see A180662 for their definitions, link the Fibonacci(n) triangle to sixteen different sequences, see the crossrefs. The knight sums Kn14 - Kn18 have been added. As could be expected all sums are related to the Fibonacci numbers. - Johannes W. Meijer, Sep 22 2010
Sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements of the sequence A. Sequence A104763 is reluctant sequence of Fibonacci numbers (A000045), except 0. - Boris Putievskiy, Dec 13 2012

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  1, 1, 2;
  1, 1, 2, 3;
  1, 1, 2, 3, 5;
  1, 1, 2, 3, 5, 8;
  1, 1, 2, 3, 5, 8, 13; ...
		

Crossrefs

Cf. A000071 (row sums). - R. J. Mathar, Jul 22 2009
Triangle sums (see the comments): A000071 (Row1; Kn4 & Ca1 & Ca4 & Gi1 & Gi4); A008346 (Row2); A131524 (Kn11); A001911 (Kn12); A006327 (Kn13); A167616 (Kn14); A180671 (Kn15); A180672 (Kn16); A180673 (Kn17); A180674 (Kn18); A052952 (Kn21 & Kn22 & Kn23 & Fi2 & Ze2); A001906 (Kn3 &Fi1 & Ze3); A004695 (Ca2 & Ze4); A001076 (Ca3 & Ze1); A080239 (Gi2); A081016 (Gi3). - Johannes W. Meijer, Sep 22 2010

Programs

  • GAP
    Flat(List([1..15], n -> List([1..n], k -> Fibonacci(k)))); # G. C. Greubel, Jul 13 2019
  • Haskell
    a104763 n k = a104763_tabl !! (n-1) !! (k-1)
    a104763_row n = a104763_tabl !! (n-1)
    a104763_tabl = map (flip take $ tail a000045_list) [1..]
    -- Reinhard Zumkeller, Aug 15 2013
    
  • Magma
    [Fibonacci(k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 13 2019
    
  • Mathematica
    Table[Fibonacci[k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    for(n=1,15, for(k=1,n, print1(fibonacci(k), ", "))) \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    [[fibonacci(k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 13 2019
    

Formula

F(1) through F(n) starting from the left in n-th row.
T(n,k) = A000045(k), 1<=k<=n. - R. J. Mathar, May 02 2008
a(n) = A000045(m), where m= n-t(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 13 2012
G.f.: (x*y)/((x-1)*(x^2*y^2+x*y-1)). - Vladimir Kruchinin, Jun 21 2025

Extensions

Edited by R. J. Mathar, May 02 2008
Extended by R. J. Mathar, Aug 27 2008

A098600 a(n) = Fibonacci(n-1) + Fibonacci(n+1) - (-1)^n.

Original entry on oeis.org

1, 2, 2, 5, 6, 12, 17, 30, 46, 77, 122, 200, 321, 522, 842, 1365, 2206, 3572, 5777, 9350, 15126, 24477, 39602, 64080, 103681, 167762, 271442, 439205, 710646, 1149852, 1860497, 3010350, 4870846, 7881197, 12752042, 20633240, 33385281, 54018522
Offset: 0

Views

Author

Paul Barry, Sep 17 2004

Keywords

Comments

Row sums of A098599.

Crossrefs

Programs

  • Magma
    [Fibonacci(n-1) + Fibonacci(n+1) - (-1)^n: n in [0..50]]; // Vincenzo Librandi, Aug 31 2014
    
  • Mathematica
    Table[-(-1)^n + LucasL[n], {n, 0, 39}] (* Alonso del Arte, Aug 30 2014 *)
    Table[Fibonacci[n - 1] + Fibonacci[n + 1] - (-1)^n, {n, 0, 40}] (* Vincenzo Librandi, Aug 31 2014 *)
    CoefficientList[ Series[-(1 + 2x)/(-1 + 2x^2 + x^3), {x, 0, 40}], x] (* or *)
    LinearRecurrence[{0, 2, 1}, {1, 2, 2}, 40] (* Robert G. Wilson v, Mar 09 2018 *)
  • PARI
    a(n)=fibonacci(n-1) + fibonacci(n+1) - (-1)^n; \\ Joerg Arndt, Oct 18 2014
    
  • PARI
    Vec((1+2*x)/((1+x)*(1-x-x^2)) + O(x^30)) \\ Colin Barker, Jun 03 2016
    
  • SageMath
    [lucas_number2(n,1,-1) -(-1)^n for n in range(51)] # G. C. Greubel, Mar 26 2024

Formula

G.f.: (1+2*x) / ((1+x)*(1-x-x^2)).
a(n) = Sum_{k = 0..n} binomial(k, n-k) + binomial(k-1, n-k-1).
a(n) = A020878(n) - 1 = A001350(n) + 1.
a(n) = Lucas(n) - (-1)^n. - Paul Barry, Dec 01 2004
a(n) = A181716(n+1). - Richard R. Forberg, Aug 30 2014
a(n) = [x^n] ( (1 + x + sqrt(1 + 6*x + 5*x^2))/2 )^n. exp( Sum_{n >= 1} a(n)*x^n/n ) = Sum_{n >= 0} Fibonacci(n+2)*x^n. Cf. A182143. - Peter Bala, Jun 29 2015
From Colin Barker, Jun 03 2016: (Start)
a(n) = (-(-1)^n + ((1/2)*(1-sqrt(5)))^n + ((1/2)*(1+sqrt(5)))^n).
a(n) = 2*a(n-2) + a(n-3) for n > 2. (End)
E.g.f.: (2*exp(3*x/2)*cosh(sqrt(5)*x/2) - 1)*exp(-x). - Ilya Gutkovskiy, Jun 03 2016
a(n) = A014217(n) + A000035(n). - Paul Curtz, Jul 27 2023

A099089 Riordan array (1, 2+x).

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 0, 4, 8, 0, 0, 1, 12, 16, 0, 0, 0, 6, 32, 32, 0, 0, 0, 1, 24, 80, 64, 0, 0, 0, 0, 8, 80, 192, 128, 0, 0, 0, 0, 1, 40, 240, 448, 256, 0, 0, 0, 0, 0, 10, 160, 672, 1024, 512, 0, 0, 0, 0, 0, 1, 60, 560, 1792, 2304, 1024, 0, 0, 0, 0, 0, 0, 12, 280, 1792, 4608, 5120, 2048
Offset: 0

Views

Author

Paul Barry, Sep 25 2004

Keywords

Comments

Row sums are A000129. Diagonal sums are A008346. The Riordan array (1, s+tx) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1/2, -1/2, 0, 0, 0, 0, ...] DELTA [2, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 10 2008
As an upper right triangle (in the example), table rows give number of points, edges, faces, cubes, 4D hypercubes etc. in hypercubes of increasing dimension by column. - Henry Bottomley, Apr 14 2000. More precisely, the (i,j)-th entry is the number of j-dimensional subspaces of an i-dimensional hypercube (see the Coxeter reference). - Christof Weber, May 08 2009

Examples

			Triangle begins:
  1;
  0,  2;
  0,  1,  4;
  0,  0,  4,  8;
  0,  0,  1, 12, 16;
  0,  0,  0,  6, 32, 32;
  0,  0,  0,  1, 24, 80, 64;
The entries can also be interpreted as the antidiagonal reading of the following array:
  1,    2,    4,    8,   16,   32,   64,  128,  256,  512, 1024,... A000079
  0,    1,    4,   12,   32,   80,  192,  448, 1024, 2304, 5120,... A001787
  0,    0,    1,    6,   24,   80,  240,  672, 1792, 4608,11520,... A001788
  0,    0,    0,    1,    8,   40,  160,  560, 1792, 5376,15360,... A001789
  0,    0,    0,    0,    1,   10,   60,  280, 1120, 4032,13440,...
  0,    0,    0,    0,    0,    1,   12,   84,  448, 2016, 8064,...
  0,    0,    0,    0,    0,    0,    1,   14,  112,  672, 3360,...
  0,    0,    0,    0,    0,    0,    0,    1,   16,  144,  960,...
  0,    0,    0,    0,    0,    0,    0,    0,    1,   18,  180,...
  0,    0,    0,    0,    0,    0,    0,    0,    0,    1,   20,...
  0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    1,...
		

References

  • H. S. M. Coxeter, Regular Polytopes, Dover Publications, New York (1973), p. 122.

Crossrefs

Formula

Number triangle T(n,k) = binomial(k, n-k)*2^k*(1/2)^(n-k); columns have g.f. (2*x+x^2)^k.
G.f.: 1/(1-2y*x-y*x^2). - Philippe Deléham, Nov 20 2011
Sum_ {k=0..n} T(n,k)*x^k = A000007(n), A000129(n+1), A090017(n+1), A090018(n), A190510(n+1), A190955(n+1) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Nov 20 2011
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 2, T(2,1) = 1, T(2,2) = 4, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 30 2013

A355020 a(n) = (-1)^n * A000045(n) + 1.

Original entry on oeis.org

1, 0, 2, -1, 4, -4, 9, -12, 22, -33, 56, -88, 145, -232, 378, -609, 988, -1596, 2585, -4180, 6766, -10945, 17712, -28656, 46369, -75024, 121394, -196417, 317812, -514228, 832041, -1346268, 2178310, -3524577, 5702888, -9227464, 14930353, -24157816, 39088170
Offset: 0

Views

Author

Clark Kimberling, Jun 21 2022

Keywords

Comments

There are the partial sums of F(1) - F(2) + F(3) - F(4) + F(5) - ... .
Closely related (Lucas, A000032) partial sums of L(1) - L(2) + L(3) - L(4) + L(5) - ... are given by A355021.
Apart from signs, same as A008346 and A119282.

Examples

			a(0) = 1;
a(1) = 1 - 1 = 0;
a(2) = 1 - 1 + 2 = 2;
a(3) = 1 - 1 + 2 - 3 = -1.
		

Crossrefs

Programs

  • Magma
    [1 - Fibonacci(-n): n in [0..50]]; // G. C. Greubel, Mar 17 2024
    
  • Mathematica
    f[n_] := Fibonacci[n]; g[n_] := LucasL[n];
    Table[(-1)^n f[n] + 1, {n, 0, 40}]   (* this sequence *)
    Table[(-1)^n g[n] - 1, {n, 0, 40}]   (* A355021 *)
    1 - Fibonacci[-Range[0, 50]] (* G. C. Greubel, Mar 17 2024 *)
  • PARI
    a(n) = (-1)^n*fibonacci(n) + 1; \\ Michel Marcus, Jun 24 2022
    
  • SageMath
    [1 - fibonacci(-n) for n in range(51)] # G. C. Greubel, Mar 17 2024

Formula

a(n) = 2*a(n-2) - a(n-3) for n > 2.
G.f.: 1/(1 - 2*x^2 + x^3).
Showing 1-10 of 28 results. Next