A099926 Duplicate of A098600.
1, 2, 2, 5, 6, 12, 17, 30, 46, 77, 122, 200, 321, 522, 842, 1365, 2206, 3572, 5777, 9350
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The Boolean complex of Coxeter group A_4 is homotopy equivalent to the wedge of 2 spheres S^3, which has Euler characteristic 1 - 2 = -1.
List([0..50], n-> Fibonacci(n) + (-1)^n); # G. C. Greubel, Jul 13 2019
[Fibonacci(n) + (-1)^n: n in [0..50]]; // Vincenzo Librandi, Apr 23 2011
with(combinat): f := n->fibonacci(n)+(-1)^n; seq(f(n), n=0..40);
Table[Fibonacci[n]+(-1)^n,{n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2008 *) CoefficientList[Series[1/(1-2x^2-x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 10 2013 *) LinearRecurrence[{0,2,1}, {1,0,2}, 51] (* Ray Chandler, Sep 08 2015 *)
a(n)=fibonacci(n)+(-1)^n \\ Charles R Greathouse IV, Feb 03 2014
[fibonacci(n)+(-1)^n for n in (0..50)] # G. C. Greubel, Jul 13 2019
Triangle begins as: 1; 1, 1; -1, 2, 1; 1, 0, 3, 1; -1, 0, 2, 4, 1; 1, 0, 0, 5, 5, 1; -1, 0, 0, 2, 9, 6, 1; 1, 0, 0, 0, 7, 14, 7, 1; -1, 0, 0, 0, 2, 16, 20, 8, 1; 1, 0, 0, 0, 0, 9, 30, 27, 9, 1;
A098599:= func< n,k | n eq 0 select 1 else Binomial(k, n-k) + Binomial(k-1, n-k-1) >; [A098599(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 27 2024
T[n_, k_]:= If[n==0, 1, Binomial[k,n-k] +Binomial[k-1,n-k-1]]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 27 2024 *)
def A098599(n,k): return 1 if n==0 else binomial(k, n-k) + binomial(k-1, n-k-1) flatten([[A098599(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 27 2024
a(0) = 1; a(1) = 1 - 3 = -2; a(2) = 1 - 3 + 4 = 2; a(3) = 1 - 3 + 4 - 7 = -5.
[Lucas(-n) -1: n in [0..50]]; // G. C. Greubel, Mar 17 2024
f[n_] := Fibonacci[n]; g[n_] := LucasL[n]; f1 = Table[(-1)^n f[n] + 1, {n, 0, 40}] (* A355020 *) g1 = Table[(-1)^n g[n] - 1, {n, 0, 40}] (* this sequence *) LucasL[-Range[0, 50]] - 1 (* G. C. Greubel, Mar 17 2024 *) LinearRecurrence[{0,2,-1},{1,-2,2},40] (* Harvey P. Dale, Sep 06 2024 *)
[lucas_number2(-n,1,-1) -1 for n in range(51)] # G. C. Greubel, Mar 17 2024
I:=[0, 1, 2]; [n le 3 select I[n] else 2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 09 2012
[Lucas(n-1)+(-1)^n: n in [0..40]]; // G. C. Greubel, Mar 25 2024
a[0]= 0; a[1]= 1; a[n_]:= a[n]= a[n-1] +a[n-2] +(-1)^n; Array[a,38,0] LinearRecurrence[{0,2,1},{0,1,2},40] (* Vincenzo Librandi, Jan 09 2012 *)
[lucas_number2(n-1,1,-1)+(-1)^n for n in range(41)] # G. C. Greubel, Mar 25 2024
I:=[1,3,5]; [n le 3 select I[n] else Self(n-1)+3*Self(n-2)+Self(n-3): n in [1..31]]; // Bruno Berselli, Apr 14 2012
Table[(1 + Sqrt[2])^n + (1 - Sqrt[2])^n - (-1)^n, {n, 0, 30}] (* Bruno Berselli, Apr 14 2012 *) Table[LucasL[n, 2] - (-1)^n, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *) LinearRecurrence[{1, 3, 1}, {1, 3, 5}, 20] (* Eric W. Weisstein, Mar 31 2017 *) CoefficientList[Series[(-1 - 2 x + x^2)/(-1 + x + 3 x^2 + x^3), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
Vec((x^2-2*x-1)/((x+1)*(x^2+2*x-1))+O(x^31)) \\ Bruno Berselli, Apr 14 2012
CoefficientList[Series[(3 - 2 x^2)/((1 + x) (1 - x - x^2)), {x, 0, 38}], x] (* Michael De Vlieger, Sep 16 2020 *)
Vec((3-2*x^2)/((1+x)*(1-x-x^2)) + O(x^40)) \\ Colin Barker, Jun 03 2016
The triangle T(p,m) with Lucas numbers on the diagonal starts 1, 1; 0, 3, 0,-1; 0, 0, 4, 0, 0, 1; 0, 0, 0, 7, 0, 0, 0,-1; 0, 0, 0, 0,11, 0, 0, 0, 0, 1; The antidiagonal sums are a(1)=1. a(2)=0+1=1. a(3)=0+3=3. a(4)=0+0+0=0. a(5)=0+0+4-1=3.
Triangle begins: 1; 1, 1; 2, -1, 1; 3, 4, -3, 1; 5, -5, 10, -5, 1; 8, 15, -25, 20, -7, 1; 13, -22, 65, -65, 34, -9, 1; ... Production matrix is: 1, 1; 1, -2, 1; 2, 0, -2, 1; 4, 0, 0, -2, 1; 8, 0, 0, 0, -2, 1; 16, 0, 0, 0, 0, -2, 1; 32, 0, 0, 0, 0, 0, -2, 1; 64, 0, 0, 0, 0, 0, 0, -2, 1; ...
nmax=10;Flatten[CoefficientList[Series[CoefficientList[Series[(1 + 2*x) / ((1 + 2*x - y*x) * (1 - x - x^2)), {x, 0, nmax }], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 15 2017 *)
Comments