cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A099926 Duplicate of A098600.

Original entry on oeis.org

1, 2, 2, 5, 6, 12, 17, 30, 46, 77, 122, 200, 321, 522, 842, 1365, 2206, 3572, 5777, 9350
Offset: 0

Views

Author

Keywords

A008346 a(n) = Fibonacci(n) + (-1)^n.

Original entry on oeis.org

1, 0, 2, 1, 4, 4, 9, 12, 22, 33, 56, 88, 145, 232, 378, 609, 988, 1596, 2585, 4180, 6766, 10945, 17712, 28656, 46369, 75024, 121394, 196417, 317812, 514228, 832041, 1346268, 2178310, 3524577, 5702888, 9227464, 14930353, 24157816, 39088170, 63245985, 102334156
Offset: 0

Views

Author

Keywords

Comments

Diagonal sums of A059260. - Paul Barry, Oct 25 2004
The absolute value of the Euler characteristic of the Boolean complex of the Coxeter group A_n. - Bridget Tenner, Jun 04 2008
a(n) is the number of compositions (ordered partitions) of n into two sorts of 2's and one sort of 3's. Example: the a(5)=4 compositions of 5 are 2+3, 2'+3, 3+2 and 3+2'. - Bob Selcoe, Jun 21 2013
Let r = 0.70980344286129... denote the rabbit constant A014565. The sequence 2^a(n) gives the simple continued fraction expansion of the constant r/2 = 0.35490172143064565732 ... = 1/(2^1 + 1/(2^0 + 1/(2^2 + 1/(2^1 + 1/(2^4 + 1/(2^4 + 1/(2^9 + 1/(2^12 + ... )))))))). Cf. A099925. - Peter Bala, Nov 06 2013
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [0, 1, 1; 1, 0, 1; 1, 0, 0] or of the 3 X 3 matrix [0, 1, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
a(n) is the number of growing self-avoiding walks with n+3 edges on the grid graph of integer points (x,y) with x >= 0 and y in {0, 1} and with a trapped endpoint. - Jay Pantone, Jul 26 2024

Examples

			The Boolean complex of Coxeter group A_4 is homotopy equivalent to the wedge of 2 spheres S^3, which has Euler characteristic 1 - 2 = -1.
		

Crossrefs

Programs

Formula

G.f.: 1/(1 - 2*x^2 - x^3).
a(n) = 2*a(n-2) + a(n-3).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} (-1)^(n-k-j)binomial(j, k). Diagonal sums of A059260. - Paul Barry, Sep 23 2004
From Paul Barry, Oct 04 2004: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)2^(3k-n).
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)2^k(1/2)^(n-2k). (End)
From Paul Barry, Oct 25 2004: (Start)
G.f.: 1/((1+x)*(1-x-x^2)).
a(n) = Sum_{k=0..n} binomial(n-k-1, k). (End)
a(n) = |1 + (-1)^(n-1)*Fibonacci(n-1)|. - Bridget Tenner, Jun 04 2008
a(n) = A000045(n) + A033999(n). - Michel Marcus, Nov 14 2013
a(n) = Fibonacci(n+1) - a(n-1), with a(0) = 1. - Franklin T. Adams-Watters, Mar 26 2014
a(n) = b(n+1) where b(n) = b(n-1) + b(n-2) + (-1)^(n+1), b(0) = 0, b(1) = 1. See also A098600. - Richard R. Forberg, Aug 30 2014
a(n) = b(n+2) where b(n) = Sum_{k=1..n} b(n-k)*A000931(k+1), b(0) = 1. - J. Conrad, Apr 19 2017
a(n) = Sum_{j=n+1..2*n+1} F(j) mod Sum_{j=0..n} F(j) for n > 2 and F(j)=A000045(j). - Art Baker, Jan 20 2019

A098599 Riordan array ((1+2*x)/(1+x), (1+x)).

Original entry on oeis.org

1, 1, 1, -1, 2, 1, 1, 0, 3, 1, -1, 0, 2, 4, 1, 1, 0, 0, 5, 5, 1, -1, 0, 0, 2, 9, 6, 1, 1, 0, 0, 0, 7, 14, 7, 1, -1, 0, 0, 0, 2, 16, 20, 8, 1, 1, 0, 0, 0, 0, 9, 30, 27, 9, 1, -1, 0, 0, 0, 0, 2, 25, 50, 35, 10, 1, 1, 0, 0, 0, 0, 0, 11, 55, 77, 44, 11, 1, -1, 0, 0, 0, 0, 0, 2, 36, 105, 112, 54, 12, 1, 1, 0, 0, 0, 0, 0, 0, 13, 91, 182, 156, 65, 13, 1
Offset: 0

Views

Author

Paul Barry, Sep 17 2004

Keywords

Examples

			Triangle begins as:
   1;
   1, 1;
  -1, 2, 1;
   1, 0, 3, 1;
  -1, 0, 2, 4, 1;
   1, 0, 0, 5, 5,  1;
  -1, 0, 0, 2, 9,  6,  1;
   1, 0, 0, 0, 7, 14,  7,  1;
  -1, 0, 0, 0, 2, 16, 20,  8, 1;
   1, 0, 0, 0, 0,  9, 30, 27, 9, 1;
		

Crossrefs

Row sums are A098600.
Diagonal sums are A098601.
Apart from signs, same as A100218.
Very similar to triangle A111125.

Programs

  • Magma
    A098599:= func< n,k | n eq 0 select 1 else Binomial(k, n-k) + Binomial(k-1, n-k-1) >;
    [A098599(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 27 2024
    
  • Mathematica
    T[n_, k_]:= If[n==0, 1, Binomial[k,n-k] +Binomial[k-1,n-k-1]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 27 2024 *)
  • SageMath
    def A098599(n,k): return 1 if n==0 else binomial(k, n-k) + binomial(k-1, n-k-1)
    flatten([[A098599(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 27 2024

Formula

Triangle: T(n, k) = binomial(k, n-k) + binomial(k-1, n-k-1), with T(0, 0) = 1.
Sum_{k=0..n} T(n, k) = A098600(n) (row sums).
T(n,k) = T(n-1,k-1) - T(n-1,k) + 2*T(n-2,k-1) + T(n-3,k-1), T(0,0)=1, T(1,0)=1, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 09 2014
From G. C. Greubel, Mar 27 2024: (Start)
T(2*n, n) = A040000(n).
T(2*n+1, n) = A000007(n).
T(2*n-1, n) = A005408(n-1), n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = A079757(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A098601(n). (End)

A355021 a(n) = (-1)^n * A000032(n) - 1.

Original entry on oeis.org

1, -2, 2, -5, 6, -12, 17, -30, 46, -77, 122, -200, 321, -522, 842, -1365, 2206, -3572, 5777, -9350, 15126, -24477, 39602, -64080, 103681, -167762, 271442, -439205, 710646, -1149852, 1860497, -3010350, 4870846, -7881197, 12752042, -20633240, 33385281
Offset: 0

Views

Author

Clark Kimberling, Jun 21 2022

Keywords

Comments

There are the partial sums of L(1) - L(2) + L(3) - L(4) + L(5) - ... .
Closely related (Fibonacci, A000045) partial sums of F(1) - F(2) + F(3) - F(4) + F(5) - ... are given by A355020.
Apart from signs, same as A098600 and A181716.

Examples

			a(0) = 1;
a(1) = 1 - 3 = -2;
a(2) = 1 - 3 + 4 = 2;
a(3) = 1 - 3 + 4 - 7 = -5.
		

Crossrefs

Programs

  • Magma
    [Lucas(-n) -1: n in [0..50]]; // G. C. Greubel, Mar 17 2024
    
  • Mathematica
    f[n_] := Fibonacci[n]; g[n_] := LucasL[n];
    f1 = Table[(-1)^n f[n] + 1, {n, 0, 40}]   (* A355020 *)
    g1 = Table[(-1)^n g[n] - 1, {n, 0, 40}]   (* this sequence *)
    LucasL[-Range[0, 50]] - 1 (* G. C. Greubel, Mar 17 2024 *)
    LinearRecurrence[{0,2,-1},{1,-2,2},40] (* Harvey P. Dale, Sep 06 2024 *)
  • SageMath
    [lucas_number2(-n,1,-1) -1 for n in range(51)] # G. C. Greubel, Mar 17 2024

Formula

a(n) = 2*a(n-2) - a(n-3) for n >= 3. [Corrected by Georg Fischer, Sep 30 2022]
G.f.: (1 - 2*x)/(1 - 2*x^2 + x^3).

A181716 a(n) = a(n-1) + a(n-2) + (-1)^n, with a(0)=0 and a(1)=1.

Original entry on oeis.org

0, 1, 2, 2, 5, 6, 12, 17, 30, 46, 77, 122, 200, 321, 522, 842, 1365, 2206, 3572, 5777, 9350, 15126, 24477, 39602, 64080, 103681, 167762, 271442, 439205, 710646, 1149852, 1860497, 3010350, 4870846, 7881197, 12752042, 20633240, 33385281, 54018522, 87403802
Offset: 0

Views

Author

Robert G. Wilson v, Nov 07 2010

Keywords

Comments

Aside from the first term, duplicate of A098600.

Crossrefs

First differences of A014217.

Programs

  • Magma
    I:=[0, 1, 2]; [n le 3 select I[n] else 2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 09 2012
    
  • Magma
    [Lucas(n-1)+(-1)^n: n in [0..40]]; // G. C. Greubel, Mar 25 2024
    
  • Mathematica
    a[0]= 0; a[1]= 1; a[n_]:= a[n]= a[n-1] +a[n-2] +(-1)^n; Array[a,38,0]
    LinearRecurrence[{0,2,1},{0,1,2},40] (* Vincenzo Librandi, Jan 09 2012 *)
  • SageMath
    [lucas_number2(n-1,1,-1)+(-1)^n for n in range(41)] # G. C. Greubel, Mar 25 2024

Formula

a(n) = a(n-1) + a(n-2) + (-1)^n.
a(n) = 2*a(n-2) + a(n-3).
a(n) - A000045(n) = A008346(n-2).
G.f.: x*(1+2*x)/(1-2*x^2-x^3). - Colin Barker, Jan 09 2012
a(n) = A000032(n-1) + (-1)^n. - G. C. Greubel, Mar 25 2024
E.g.f.: exp(x/2)*(sqrt(5)*sinh(sqrt(5)*x/2) - cosh(sqrt(5)*x/2)) + exp(-x). - Stefano Spezia, Jun 18 2024

A182143 Number of independent vertex sets in the Moebius ladder graph with 2n nodes (n >= 0).

Original entry on oeis.org

1, 3, 5, 15, 33, 83, 197, 479, 1153, 2787, 6725, 16239, 39201, 94643, 228485, 551615, 1331713, 3215043, 7761797, 18738639, 45239073, 109216787, 263672645, 636562079, 1536796801, 3710155683, 8957108165, 21624372015, 52205852193, 126036076403, 304278004997
Offset: 0

Views

Author

Cesar Bautista, Apr 14 2012

Keywords

Comments

Also the number of vertex covers. - Eric W. Weisstein, Jan 04 2014

Crossrefs

Programs

  • Magma
    I:=[1,3,5]; [n le 3 select I[n] else Self(n-1)+3*Self(n-2)+Self(n-3): n in [1..31]]; // Bruno Berselli, Apr 14 2012
  • Mathematica
    Table[(1 + Sqrt[2])^n + (1 - Sqrt[2])^n - (-1)^n, {n, 0, 30}] (* Bruno Berselli, Apr 14 2012 *)
    Table[LucasL[n, 2] - (-1)^n, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    LinearRecurrence[{1, 3, 1}, {1, 3, 5}, 20] (* Eric W. Weisstein, Mar 31 2017 *)
    CoefficientList[Series[(-1 - 2 x + x^2)/(-1 + x + 3 x^2 + x^3), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
  • PARI
    Vec((x^2-2*x-1)/((x+1)*(x^2+2*x-1))+O(x^31)) \\ Bruno Berselli, Apr 14 2012
    

Formula

G.f.: (x^2-2*x-1)/((x+1)*(x^2+2*x-1)).
a(n) = (1+sqrt(2))^n + (1-sqrt(2))^n - (-1)^n = A002203(n) - (-1)^n.
a(n) = a(n-1) + 3*a(n-2) + a(n-3) with a(0)=1, a(1)=3, a(2)=5.
From Peter Bala, Jun 29 2015: (Start)
a(n) = Pell(n-1) + Pell(n+1) - (-1)^n.
a(n) = [x^n] ( (1 + 2*x + sqrt(1 + 8*x + 8*x^2))/2 )^n.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 7*x^3 + 17*x^4 + 41*x^5 + ... = Sum_{n >= 0} A001333*x^n. Cf. A098600. (End)

A099925 a(n) = Lucas(n) + (-1)^n.

Original entry on oeis.org

3, 0, 4, 3, 8, 10, 19, 28, 48, 75, 124, 198, 323, 520, 844, 1363, 2208, 3570, 5779, 9348, 15128, 24475, 39604, 64078, 103683, 167760, 271444, 439203, 710648, 1149850, 1860499, 3010348, 4870848, 7881195, 12752044, 20633238, 33385283, 54018520, 87403804
Offset: 0

Views

Author

Ralf Stephan, Nov 02 2004

Keywords

Comments

Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio and put c = sum {n = 1..inf} 1/2^floor(n*(phi + 2)). The bicimal expansion of the constant c begins 0.001000100100010001001.... The binary digits are the generalized Fibonacci word A221150.
The sequence 2^a(n) for n >= 1 gives the partial quotients, apart from the first, in the simple continued fraction expansion of the constant 1/2*c = 0.06692 72114 83804 90296 ... = 1/(14 + 1/(2^0 + 1/(2^4 + 1/(2^3 + 1/(2^8 + 1/(2^10 + 1/(2^19 + ...))))))). Cf. A008346. - Peter Bala, Nov 06 2013

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3 - 2 x^2)/((1 + x) (1 - x - x^2)), {x, 0, 38}], x] (* Michael De Vlieger, Sep 16 2020 *)
  • PARI
    Vec((3-2*x^2)/((1+x)*(1-x-x^2)) + O(x^40)) \\ Colin Barker, Jun 03 2016

Formula

G.f.: (3-2*x^2)/((1+x)*(1-x-x^2)).
a(0) = 3, a(1) = 0, a(2) = 4 and a(n) = 2*a(n-2) + a(n-3) for n >= 3. - Peter Bala, Nov 06 2013
a(n) = A068397(n) - 1 for n>2.
a(n) = ((-1)^n+(1/2*(1-sqrt(5)))^n+(1/2*(1+sqrt(5)))^n). - Colin Barker, Jun 03 2016

A138123 Antidiagonal sums of a triangle of coefficients of recurrences of the Fibonacci sequence.

Original entry on oeis.org

1, 1, 3, 0, 3, 0, 7, 1, 11, 0, 17, 0, 29, 1, 47, 0, 75, 0, 123, 1, 199, 0, 321, 0, 521, 1, 843, 0, 1363, 0, 2207, 1, 3571, 0, 5777, 0, 9349, 1, 15127, 0, 24475, 0, 39603, 1, 64079, 0, 103681, 0, 167761, 1, 271443, 0, 439203, 0, 710647, 1, 1149851, 0, 1860497, 0
Offset: 1

Views

Author

Paul Curtz, May 04 2008

Keywords

Comments

Consider the irregular sparse triangle T(p,p) = A000204(p), T(p,2p)= -A033999(p)=(-1)^(p+1), T(p,m) =0 else; 1<=m<=2p, p>=1. Then a(n)=sum_{m=1..[2(n+1)/3]} T(1+n-m,m).
The T are coefficients in recurrences f(n)=sum_{m=1..2p} T(p,m)*f(n-m).
The recurrence for p=1, f(n)=f(n-1)+f(n-2), is satisfied by the Fibonacci sequence A000045. The recurrence for p=2, f(n)=3f(n-2)-f(n-4), is satisfied by A005013, A005247, A075091, A075270, A108362 and A135992.
Conjecture: The Fibonacci sequence F obeys all the recurrences: A000045(n)=F(n)= L(p)*F(n-p)-(-1)^p*F(n-2p), any p>0, L=A000204.
[Proof: conjecture is equivalent to the existence of a g.f. of F with denominator 1-L(p)x^p+(-1)^p*x^(2p). Since 1-x-x^2 is known to be a denominator of such a g.f. of A000045, the conjecture is that 1-L(p)*x^p+(-1)^p*x^(2p) can be reduced to 1-x-x^2. One finds: {1-L(p)*x^p+(-1)^p*x^(2p)}/(1-x-x^2) = sum{n=0..p-1}F(n+1)x^n-sum{n=0..p-2} (-1)^(n+p)F(n+1)x^(2p-n-2) is a polynomial with integer coefficients, which is proved by multiplication with 1-x-x^2 and via F(n)+F(n+1)=F(n+2) and L(n)=F(n-1)+F(n+1). - R. J. Mathar, Jul 10 2008].
Conjecture: The Lucas sequence L also obeys all the recurrences: L(n)= L(p)*L(n-p)-(-1)^p*L(n-2p), any p>0, L=A000204.

Examples

			The triangle T(p,m) with Lucas numbers on the diagonal starts
  1, 1;
  0, 3, 0,-1;
  0, 0, 4, 0, 0, 1;
  0, 0, 0, 7, 0, 0, 0,-1;
  0, 0, 0, 0,11, 0, 0, 0, 0, 1;
The antidiagonal sums are a(1)=1. a(2)=0+1=1. a(3)=0+3=3. a(4)=0+0+0=0. a(5)=0+0+4-1=3.
		

Formula

Row sums: Sum_{m=1..2p} T(p,m) = A098600(p).
Conjectures from Chai Wah Wu, Apr 15 2024: (Start)
a(n) = a(n-2) - a(n-3) + a(n-4) + a(n-5) + a(n-7) for n > 7.
G.f.: x*(-x^5 - 2*x^2 - x - 1)/((x + 1)*(x^2 - x + 1)*(x^4 + x^2 - 1)). (End)

Extensions

Edited and extended by R. J. Mathar, Jul 10 2008

A237498 Riordan array (1/(1-x-x^2), x/(1+2*x)).

Original entry on oeis.org

1, 1, 1, 2, -1, 1, 3, 4, -3, 1, 5, -5, 10, -5, 1, 8, 15, -25, 20, -7, 1, 13, -22, 65, -65, 34, -9, 1, 21, 57, -152, 195, -133, 52, -11, 1, 34, -93, 361, -542, 461, -237, 74, -13, 1, 55, 220, -815, 1445, -1464, 935, -385, 100, -15, 1, 89, -385, 1850, -3705
Offset: 0

Views

Author

Philippe Deléham, Feb 08 2014

Keywords

Comments

First column: Fibonacci numbers A000045(n+1).

Examples

			Triangle begins:
   1;
   1,    1;
   2,   -1,    1;
   3,    4,   -3,    1;
   5,   -5,   10,   -5,   1;
   8,   15,  -25,   20,  -7,   1;
  13,  -22,   65,  -65,  34,  -9,  1;
  ...
Production matrix is:
   1,  1;
   1, -2,  1;
   2,  0, -2,  1;
   4,  0,  0, -2,  1;
   8,  0,  0,  0, -2,  1;
  16,  0,  0,  0,  0, -2,  1;
  32,  0,  0,  0,  0,  0, -2,  1;
  64,  0,  0,  0,  0,  0,  0, -2,  1;
  ...
		

Crossrefs

Columns: A000045, A084179.

Programs

  • Mathematica
    nmax=10;Flatten[CoefficientList[Series[CoefficientList[Series[(1 + 2*x) / ((1 + 2*x - y*x) * (1 - x - x^2)), {x, 0, nmax }], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 15 2017 *)

Formula

Sum_{k=0..n} T(n,k)*x^k = A000045(n+1), A098600(n), A000032(n+1), A027961(n+1), A027974(n) for x = 0, 1, 2, 3, 4 respectively.
T(n,k) = T(n-1,k-1) - T(n-1,k) + 3*T(n-2,k) - T(n-2,k-1) + 2*T(n-3,k) - T(n-3,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 2, T(2,1) = -1, T(n,k) = 0 if k<0 or if k>n.
T(n,0) = T(n-1,0) + T(n-2,0) with T(0,0) = T(1,0) = 1, T(n,k) = T(n-1,k-1) - 2*T(n-1,k) for k>=1.
G.f.: (1+2*x)/((1+2*x-y*x)*(1-x-x^2)).
Showing 1-9 of 9 results.