A099947 Number of topologically connected set partitions of {1,...,n}.
1, 1, 1, 1, 2, 6, 21, 85, 385, 1907, 10205, 58455, 355884, 2290536, 15518391, 110283179, 819675482, 6355429550, 51293023347, 430062712439, 3739408304962, 33665192703946, 313354708842791, 3011545611755271, 29847401178719637, 304713973031878687, 3201007359886598431
Offset: 0
Examples
O.g.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 21*x^6 + 85*x^7 +... From _Paul D. Hanna_, Apr 16 2013: (Start) The o.g.f. satisfies (1) A(x) = 1 + x/A(x) + 2*x^2/A(x)^2 + 5*x^3/A(x)^3 + 15*x^4/A(x)^4 + 52*x^5/A(x)^5 + 203*x^6/A(x)^6 + ... + A000110(n)*x^n/A(x)^n + ... (2) A(x) = 1 + x/(A(x)-x) + x^2/((A(x)-x)*(A(x)-2*x)) + x^3/((A(x)-x)*(A(x)-2*x)*(A(x)-3*x)) + x^4/((A(x)-x)*(A(x)-2*x)*(A(x)-3*x)*(A(x)-4*x)) + ... (End) From _Gus Wiseman_, Feb 19 2019: (Start) The a(1) = 1 through a(6) = 21 topologically connected set partitions: {{1}} {{12}} {{123}} {{1234}} {{12345}} {{123456}} {{13}{24}} {{124}{35}} {{1235}{46}} {{13}{245}} {{124}{356}} {{134}{25}} {{1245}{36}} {{135}{24}} {{1246}{35}} {{14}{235}} {{125}{346}} {{13}{2456}} {{134}{256}} {{1345}{26}} {{1346}{25}} {{135}{246}} {{1356}{24}} {{136}{245}} {{14}{2356}} {{145}{236}} {{146}{235}} {{15}{2346}} {{13}{25}{46}} {{14}{25}{36}} {{14}{26}{35}} {{15}{24}{36}} (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..222
- Janet Simpson Beissinger, The enumeration of irreducible combinatorial objects, J. Comb. Theory, Ser. A, 38 (1985), pp. 143-169. (Example 6.2)
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, A family of Bell transformations, arXiv:1803.07727 [math.CO], 2018.
- Kenneth J. Dykema, Generating functions for purely crossing partitions, arXiv:1602.03469 [math.CO], 2016. See column NIS in Table 2 p. 8.
- FindStat, The number of topologically connected components of a set partition.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Martin Klazar, Bell numbers, their relatives and algebraic differential equations
- Martin Klazar, Bell numbers, their relatives and algebraic differential equations, J. Combin. Theory, A 102 (2003), 63-87.
Crossrefs
Programs
-
Mathematica
a[0] = 1; a[n_] := Module[{A = 1 + x}, For[i = 1, i <= n, i++, A = Sum[x^m/Product[A - k*x + x*O[x]^n, {k, 1, m}], {m, 0, n}]]; Coefficient[A, x^n]]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 13 2013, after Paul D. Hanna *) nn=8; nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; Solve[Table[BellB[n]==Sum[Product[a[Length[s]],{s,stn}],{stn,Select[sps[Range[n]],nonXQ]}],{n,nn}],Array[a,nn]] (* Gus Wiseman, Feb 19 2019 *) -
PARI
{a(n)=if(n<0, 0, polcoeff( x/serreverse(x*serlaplace(exp(exp(x+x*O(x^n))-1))), n))} /* Michael Somos, Sep 22 2005 */
-
PARI
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m/prod(k=1, m, A - k*x +x*O(x^n)) )); polcoeff(A, n)} \\ Paul D. Hanna, Apr 16 2013
Formula
From Paul D. Hanna, Apr 16 2013: (Start)
O.g.f. A(x) satisfies
(2) A(x) = Sum_{n>=0} x^n / Product_{k=1..n} (A(x) - k*x).
(3) A(x) = 1/(1 - x/(A(x) - 1*x/(1 - x/(A(x) - 2*x/(1 - x/(A(x) - 3*x/(1 - x/(A(x) - 4*x/(1 - x/(A(x) - ... )))))))))), a continued fraction. (End)
B(n) = Sum_p Product_{s in p} a(|s|) where p is a non-crossing set partition of {1,...,n} and B = A000110. In words, every set partition of {1,...,n} can be uniquely decomposed as a non-crossing set partition together with a topologically connected set partition of each block. - Gus Wiseman, Feb 19 2019
Extensions
Name edited by Gus Wiseman, Feb 19 2019
Comments