cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099948 Number of partitions of n such that the number of blocks is congruent to 3 mod 4.

Original entry on oeis.org

1, 6, 25, 90, 302, 994, 3487, 15210, 92489, 713988, 5979480, 50184316, 412595913, 3317961318, 26241631409, 205918294518, 1622545217510, 13045429410974, 109152638729439, 969395726250226, 9255388478615017, 94973500733767432, 1034488089509527120
Offset: 3

Views

Author

N. J. A. Sloane, Nov 12 2004

Keywords

Examples

			a(11)=92489 because stirling2(11,3)+stirling2(11,7)+stirling2(11,11)=92489.
		

Crossrefs

Programs

  • Maple
    seq(sum(stirling2(n,3+4*k),k=0..(n-3)/4),n=3..26); # Emeric Deutsch, Dec 15 2004
    # second Maple program:
    with(combinat):
    b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=3, 1, 0),
         `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1, irem(m+j, 4)), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=3..30);  # Alois P. Heinz, Sep 17 2015
  • Mathematica
    Table[Sum[StirlingS2[n, 3+4*k], {k, 0, (n-3)/4}], {n, 3, 26}] (* Jean-François Alcover, Feb 18 2016, after Emeric Deutsch *)

Formula

G.f.: sum(x^k/[(1-x)(1-2x)...(1-kx)], k=3 (mod 4)). - Emeric Deutsch, Dec 15 2004

Extensions

More terms from Emeric Deutsch, Dec 15 2004