A099960 An interleaving of the Genocchi numbers of the first and second kind, A110501 and A005439.
1, 1, 1, 1, 2, 3, 8, 17, 56, 155, 608, 2073, 9440, 38227, 198272, 929569, 5410688, 28820619, 186043904, 1109652905, 7867739648, 51943281731, 401293838336, 2905151042481, 24290513745920, 191329672483963, 1721379917619200, 14655626154768697, 141174819474169856
Offset: 0
References
- Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 220, answer to exercise 174, Addison-Wesley, 2009.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- Catalin Zara, Cardinality of l_1-Segments and Genocchi Numbers, arXiv:1304.5798 [math.CO] (2013)
Programs
-
Maple
with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n,p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j],j=1..i): vector(n,q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j],j=1..i) else sum(a[j],j=1..n) fi end: vector(n+1,q) end: R[0]:=vector(1,1): for n from 1 to 30 do if n mod 2 = 1 then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: seq(R[n][1],n=0..30); # Emeric Deutsch
-
Mathematica
g1 = Table[2*(4^n-1)*BernoulliB[2*n] // Abs, {n, 0, 13}]; g2 = Table[2*(-1)^(n-2)*Sum[Binomial[n, k]*(1-2^(n+k+1))*BernoulliB[n+k+1], {k, 0, n}], {n, 0, 13}]; Riffle[g1, g2] // Rest (* Jean-François Alcover, May 23 2013 *)
-
Sage
# Algorithm of L. Seidel (1877) def A099960_list(n) : D = [0]*(n//2+3); D[1] = 1 R = []; b = True; h = 1 for i in (1..n) : if b : for k in range(h,0,-1) : D[k] += D[k+1] R.append(D[1]); h += 1 else : for k in range(1,h, 1) : D[k] += D[k-1] R.append(D[h-1]) b = not b return R A099960_list(27) # Peter Luschny, Apr 30 2012
Formula
a(n) ~ 2^(5/2) * n^(n+3/2) / (Pi^(n+1/2) * exp(n)). - Vaclav Kotesovec, Sep 10 2014
Extensions
More terms from Emeric Deutsch, Nov 16 2004
Comments