A100008 Number of unitary divisors of 2n.
2, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 8, 2, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 2, 8, 4, 8, 4, 4, 4, 8, 4, 4, 8, 4, 4, 8, 4, 4, 4, 4, 4, 8, 4, 4, 4, 8, 4, 8, 4, 4, 8, 4, 4, 8, 2, 8, 8, 4, 4, 8, 8, 4, 4, 4, 4, 8, 4, 8, 8, 4, 4, 4, 4, 4, 8, 8, 4, 8, 4, 4, 8, 8, 4, 8, 4, 8, 4, 4, 4, 8, 4, 4, 8, 4, 4, 16
Offset: 1
Examples
a(6)=4 because among the six divisors of 12 only 1,3,4 and 12 are unitary.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): for n from 1 to 120 do printf(`%d,`,2^nops(ifactors(2*n)[2])) od: # Emeric Deutsch, Dec 24 2004
-
Mathematica
a[n_] := 2^PrimeNu[2*n]; Array[a, 100] (* Amiram Eldar, Jan 28 2023 *)
-
PARI
A100008(n) = 2^omega(2*n); \\ Antti Karttunen, Sep 14 2017
Formula
Dirichlet g.f.: 2*zeta(s)^2/(zeta(2*s)*(1+1/2^s)). - Amiram Eldar, Jan 28 2023
Sum_{k=1..n} a(k) ~ 8*n*((log(n) - 1 + 2*gamma + log(2)/3)/Pi^2 - 12*zeta'(2)/Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 28 2023
Extensions
More terms from Emeric Deutsch, Dec 24 2004
Comments