cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100008 Number of unitary divisors of 2n.

Original entry on oeis.org

2, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 8, 2, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 2, 8, 4, 8, 4, 4, 4, 8, 4, 4, 8, 4, 4, 8, 4, 4, 4, 4, 4, 8, 4, 4, 4, 8, 4, 8, 4, 4, 8, 4, 4, 8, 2, 8, 8, 4, 4, 8, 8, 4, 4, 4, 4, 8, 4, 8, 8, 4, 4, 4, 4, 4, 8, 8, 4, 8, 4, 4, 8, 8, 4, 8, 4, 8, 4, 4, 4, 8, 4, 4, 8, 4, 4, 16
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2004

Keywords

Comments

b(n) = a(n)/a(1) is multiplicative with b(2^e) = 1, b(p^e) = 2 otherwise. - David W. Wilson, Jun 12 2005

Examples

			a(6)=4 because among the six divisors of 12 only 1,3,4 and 12 are unitary.
		

Crossrefs

Bisection of A034444, twice A068068.

Programs

  • Maple
    with(numtheory): for n from 1 to 120 do printf(`%d,`,2^nops(ifactors(2*n)[2])) od: # Emeric Deutsch, Dec 24 2004
  • Mathematica
    a[n_] := 2^PrimeNu[2*n]; Array[a, 100] (* Amiram Eldar, Jan 28 2023 *)
  • PARI
    A100008(n) = 2^omega(2*n); \\ Antti Karttunen, Sep 14 2017

Formula

a(n) = A000079(A099812(n)) = A000079(A001221(2n)) = 2*A068068(n). - Antti Karttunen, Sep 14 2017
Dirichlet g.f.: 2*zeta(s)^2/(zeta(2*s)*(1+1/2^s)). - Amiram Eldar, Jan 28 2023
Sum_{k=1..n} a(k) ~ 8*n*((log(n) - 1 + 2*gamma + log(2)/3)/Pi^2 - 12*zeta'(2)/Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 28 2023

Extensions

More terms from Emeric Deutsch, Dec 24 2004