cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100007 Number of unitary divisors of 2n-1 (d such that d divides 2n-1, GCD(d,(2n-1)/d)=1). Bisection of A034444.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 4, 2, 2, 2, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 8, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, 2, 8, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 8, 2, 2, 4, 4, 4, 4, 4
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2004

Keywords

Examples

			a(13)=2 because among the three divisors of 25 only 1 and 25 are unitary.
		

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 120 do printf(`%d,`,2^nops(ifactors(2*n-1)[2])) od: # Emeric Deutsch, Dec 24 2004
  • Mathematica
    a[n_] := 2^PrimeNu[2*n-1]; Array[a, 100] (* Amiram Eldar, Jan 28 2023 *)
  • PARI
    a(n) = 2^omega(2*n-1); \\ Amiram Eldar, Jan 28 2023

Formula

From Ilya Gutkovskiy, Apr 28 2017: (Start)
a(n) = [x^(2*n-1)] Sum_{k>=1} mu(k)^2*x^k/(1 - x^k).
a(n) = 2^omega(2*n-1). (End)
From Amiram Eldar, Jan 28 2023: (Start)
a(n) = A034444(2*n-1) = A068068(2*n-1).
Sum_{k=1..n} a(k) ~ 4*n*((log(n) + 2*gamma - 1 + 7*log(2)/3 - 2*zeta'(2)/zeta(2)) / Pi^2, where gamma is Euler's constant (A001620). (End)

Extensions

More terms from Emeric Deutsch, Dec 24 2004

A360156 a(n) is the sum of the even unitary divisors of 2*n.

Original entry on oeis.org

2, 4, 8, 8, 12, 16, 16, 16, 20, 24, 24, 32, 28, 32, 48, 32, 36, 40, 40, 48, 64, 48, 48, 64, 52, 56, 56, 64, 60, 96, 64, 64, 96, 72, 96, 80, 76, 80, 112, 96, 84, 128, 88, 96, 120, 96, 96, 128, 100, 104, 144, 112, 108, 112, 144, 128, 160, 120, 120, 192, 124, 128
Offset: 1

Views

Author

Amiram Eldar, Jan 28 2023

Keywords

Comments

a(n) is the unitary analog of A146076(2*n).

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; a[n_] := Module[{e = IntegerExponent[n, 2]}, 2^(e + 1) * usigma[n/2^e]]; Array[a, 100]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + 1)} ;
    a(n) = {my(e = valuation(n, 2)); (1 << (e+1)) * usigma(n >> e); }

Formula

a(n) = Sum_{even d|(2*n), gcd(d, 2*n/d)=1} d.
a(n) = A034448(2*n) - A192066(2*n).
a(n) = A192066(2*n) - A328258(2*n).
a(n) = A171977(n) * A192066(n).
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (7*zeta(3)).
Dirichlet g.f. of b(n): (zeta(s)*zeta(s-1)/zeta(2*s-1))*(2^(s+1)-2)/(2^(2*s)-2), where b(n) is the sum of the even unitary divisors of n: b(n) = a(n/2) if n is even and 0 otherwise.

A346773 a(n) = Sum_{d|n} möbius(d)^n.

Original entry on oeis.org

1, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 0, 4, 0, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0, 4, 0, 2, 0, 8, 0, 4, 0, 8, 0, 4, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0
Offset: 1

Views

Author

Seiichi Manyama, Aug 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[d]^n,{d,Divisors[n]}],{n,103}] (* Stefano Spezia, Aug 03 2021 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d)^n);
    
  • PARI
    a(n) = if(n%2, 0^(n-1), 2^omega(2*n));
    
  • PARI
    N=99; x='x+O('x^N); Vec(sum(k=1, N, (moebius(k)*x)^k/(1-(moebius(k)*x)^k)))

Formula

G.f.: Sum_{k>=1} (mu(k)*x)^k/(1 - (mu(k)*x)^k).
a(2*n-1) = 0^(n-1) and a(2*n) = A034444(2*n) = A100008(n) for n > 0.
Showing 1-3 of 3 results.