A100015 Subfactorial primes: primes of the form !k + 1 or !k - 1. Subfactorial or rencontres numbers or derangements !k = A000166(k).
2, 3, 43, 481066515733, 130850092279663
Offset: 1
Keywords
Examples
a(1) = 2 because !0 = !2 = 1, so !0 + 1 = !2 + 1 = 2. a(5) = 130850092279663 because the 5th subfactorial prime is !17 - 1 = 130850092279664 - 1 = 130850092279663.
References
- R. A. Brualdi and H. J. Ryser: Combinatorial Matrix Theory, 1992, Section 7.2, p. 202.
- H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 23.
Links
- R. M. Dickau, Derangement diagrams.
- H. Fripertinger, The Recontre Numbers, an online calculator.
- Mehdi Hassani, Derangements and Applications, Journal of Integer Sequences, Vol. 6 (2003), #03.1.2
Crossrefs
Cf. A000166.
Programs
-
Mathematica
Select[Union[Flatten[Table[Subfactorial[n]+{1,-1},{n,20}]]],PrimeQ] (* Harvey P. Dale, Feb 17 2023 *)
Comments