A100067 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*2^(n-2*k).
1, 2, 6, 14, 38, 92, 240, 590, 1510, 3740, 9476, 23564, 59372, 147968, 371636, 927374, 2324870, 5805740, 14538660, 36322340, 90898228, 227153192, 568235696, 1420236524, 3551943388, 8878506392, 22201466280, 55498465400, 138766221800, 346895496200, 867316299260, 2168213189390
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Magma
m:=2; [(&+[Binomial(n,k)*m^(n-2*k): k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Jun 08 2022
-
Mathematica
CoefficientList[Series[x/(Sqrt[1-4*x^2]*(Sqrt[1-4*x^2]+x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 06 2012 *)
-
PARI
my(x='x+O('x^66)); Vec(x/(sqrt(1-4*x^2)*(sqrt(1-4*x^2)+x-1))) \\ Joerg Arndt, May 12 2013
-
SageMath
m=2; [sum(binomial(n,k)*m^(n-2*k) for k in (0..n//2)) for n in (0..40)] # G. C. Greubel, Jun 08 2022
Formula
G.f.: x/(sqrt(1-4*x^2)*(sqrt(1-4*x^2)+x-1)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*2^(n-2*k).
a(n) = Sum_{k=0..n} binomial(n, (n-k)/2)*(1 + (-1)^(n-k))*2^k/2.
Recurrence: 2*n*(3*n-7)*a(n) = (15*n^2 - 35*n + 8)*a(n-1) + 4*(6*n^2 - 20*n + 11)*a(n-2) - 20*(n-2)*(3*n-4)*a(n-3). - Vaclav Kotesovec, Dec 06 2012
a(n) ~ 5^n/2^n. - Vaclav Kotesovec, Dec 06 2012
Comments