A100158 Structured disdyakis triacontahedral numbers (vertex structure 11).
1, 62, 293, 804, 1705, 3106, 5117, 7848, 11409, 15910, 21461, 28172, 36153, 45514, 56365, 68816, 82977, 98958, 116869, 136820, 158921, 183282, 210013, 239224, 271025, 305526, 342837, 383068, 426329, 472730, 522381, 575392
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(1/6)*(110*n^3-150*n^2+46*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
-
Mathematica
Table[(110*n^3 - 150*n^2 + 46*n)/6, {n,1,50}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1, 62, 293, 804}, 50] (* G. C. Greubel, Oct 18 2018 *)
-
PARI
vector(50, n, (110*n^3 - 150*n^2 + 46*n)/6) \\ G. C. Greubel, Oct 18 2018
Formula
a(n) = (1/6)*(110*n^3 - 150*n^2 + 46*n).
G.f.: x*(1 + 58*x + 51*x^2)/(1-x)^4. - Colin Barker, Apr 16 2012
E.g.f.: x*(3 + 90*x + 55*x^2)*exp(x)/3. - G. C. Greubel, Oct 18 2018
Comments