cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100175 Structured triakis tetrahedral numbers (vertex structure 4).

Original entry on oeis.org

1, 8, 30, 76, 155, 276, 448, 680, 981, 1360, 1826, 2388, 3055, 3836, 4740, 5776, 6953, 8280, 9766, 11420, 13251, 15268, 17480, 19896, 22525, 25376, 28458, 31780, 35351, 39180, 43276, 47648, 52305, 57256, 62510, 68076, 73963, 80180, 86736, 93640, 100901, 108528
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Equals binomial transform of [1, 7, 15, 9, 0, 0, 0, ...] where (1, 7, 15, 9) = row 3 of triangle A038763. - Gary W. Adamson, Jul 19 2008
Equals convolution square of 1, 4, 7, 10, 13, 16, 19, ..., A016777. - Gary W. Adamson, Jul 28 2009

Crossrefs

Cf. A000578 (alternate vertex), A100145 for more on structured numbers.
Cf. A038763.

Programs

  • Magma
    [(3*n^3-3*n^2+2*n)/2: n in [1..50] ]; // Vincenzo Librandi, Aug 02 2011
  • Mathematica
    CoefficientList[Series[x (2x+1)^2/((x-1)^4),{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{0,1,8,30},50] (* Harvey P. Dale, Mar 18 2023 *)

Formula

a(n) = (3*n^3 - 3*n^2 + 2*n)/2.
G.f.: x*(2*x+1)^2 / ( (x-1)^4 ).