cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100232 Triangle, read by rows, of the coefficients of [x^k] in G100231(x)^n such that the row sums are 5^n-1 for n>0, where G100231(x) is the g.f. of A100231.

Original entry on oeis.org

1, 1, 3, 1, 6, 17, 1, 9, 39, 75, 1, 12, 70, 220, 321, 1, 15, 110, 470, 1165, 1363, 1, 18, 159, 852, 2895, 5922, 5777, 1, 21, 217, 1393, 5943, 16807, 29267, 24475, 1, 24, 284, 2120, 10822, 38536, 93468, 141688, 103681, 1, 27, 360, 3060, 18126, 77274, 236748
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2004

Keywords

Comments

The main diagonal forms A100233. Secondary diagonal is: T(n+1,n) = (n+1)*A033887(n) = (n+1)*Fibonacci(3*n+1). More generally, if g.f. F(x) satisfies: m^n-b^n = Sum_{k=0..n} [x^k]F(x)^n, then F(x) also satisfies: (m+z)^n - (b+z)^n + z^n = Sum_{k=0..n} [x^k](F(x)+z*x)^n for all z and F(x)=(1+(m-1)*x+sqrt(1+2*(m-2*b-1)*x+(m^2-2*m+4*b+1)*x^2))/2; the triangle formed from powers of F(x) will have the g.f.: G(x,y)=(1-2*x*y+m*x^2*y^2)/((1-x*y)*(1-(m-1)*x*y-x^2*y^2-x*(1-x*y))).

Examples

			Rows begin:
[1],
[1,3],
[1,6,17],
[1,9,39,75],
[1,12,70,220,321],
[1,15,110,470,1165,1363],
[1,18,159,852,2895,5922,5777],
[1,21,217,1393,5943,16807,29267,24475],
[1,24,284,2120,10822,38536,93468,141688,103681],...
where row sums form 5^n-1 for n>0:
5^1-1 = 1+3 = 4
5^2-1 = 1+6+17 = 24
5^3-1 = 1+9+39+75 = 124
5^4-1 = 1+12+70+220+321 = 624
5^5-1 = 1+15+110+470+1165+1363 = 3124.
The main diagonal forms A100233 = [1,3,17,75,321,1363,5777,...],
where Sum_{n>=1} A100233(n)/n*x^n = log((1-x)/(1-4*x-x^2)).
		

Crossrefs

Programs

  • PARI
    T(n,k,m=5)=if(n
    				

Formula

G.f.: A(x, y)=(1-2*x*y+5*x^2*y^2)/((1-x*y)*(1-4*x*y-x^2*y^2-x*(1-x*y))).