A100233
a(n) = Lucas(3*n) - 1.
Original entry on oeis.org
1, 3, 17, 75, 321, 1363, 5777, 24475, 103681, 439203, 1860497, 7881195, 33385281, 141422323, 599074577, 2537720635, 10749957121, 45537549123, 192900153617, 817138163595, 3461452808001, 14662949395603, 62113250390417, 263115950957275, 1114577054219521
Offset: 0
-
I:=[1, 3, 17]; [n le 3 select I[n] else 5*Self(n-1) -3*Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 21 2017
-
Table[LucasL[3*n] - 1, {n,0,50}] (* or *) LinearRecurrence[{5,-3,-1}, {1,3,17}, 30] (* G. C. Greubel, Dec 21 2017 *)
-
a(n)=if(n==0,1,n*polcoeff(log((1-x)/(1-4*x-x^2)+x*O(x^n)),n))
-
Vec((1-2*x+5*x^2)/((1-x)*(1-4*x-x^2)) + O(x^40)) \\ Colin Barker, Jun 02 2016
A100235
Triangle, read by rows, of the coefficients of [x^k] in G100234(x)^n such that the row sums are 6^n-1 for n>0, where G100234(x) is the g.f. of A100234.
Original entry on oeis.org
1, 1, 4, 1, 8, 26, 1, 12, 63, 139, 1, 16, 116, 436, 726, 1, 20, 185, 965, 2830, 3774, 1, 24, 270, 1790, 7335, 17634, 19601, 1, 28, 371, 2975, 15505, 52444, 106827, 101784, 1, 32, 488, 4584, 28860, 124424, 358748, 633952, 528526, 1, 36, 621, 6681, 49176, 256194
Offset: 0
Rows begin:
[1],
[1,4],
[1,8,26],
[1,12,63,139],
[1,16,116,436,726],
[1,20,185,965,2830,3774],
[1,24,270,1790,7335,17634,19601],
[1,28,371,2975,15505,52444,106827,101784],
[1,32,488,4584,28860,124424,358748,633952,528526],...
where row sums form 6^n-1 for n>0:
6^1-1 = 1+4 = 5
6^2-1 = 1+8+26 = 35
6^3-1 = 1+12+63+139 = 215
6^4-1 = 1+16+116+436+726 = 1295
6^5-1 = 1+20+185+965+2830+3774 = 7775.
The main diagonal forms A100236 = [1,4,26,139,726,3774,...],
where Sum_{n>=1} A100236(n)/n*x^n = log((1-x)/(1-5*x-x^2)).
-
row[n_] := CoefficientList[ Series[ (1 + 5*x + Sqrt[1 + 6*x + 29*x^2])^n/2^n, {x, 0, n}], x]; Flatten[ Table[ row[n], {n, 0, 9}]](* Jean-François Alcover, May 11 2012, after PARI *)
-
T(n,k,m=6)=if(n
A100231
G.f. A(x) satisfies: 5^n - 1 = Sum_{k=0..n} [x^k]A(x)^n and also satisfies: (5+z)^n - (1+z)^n + z^n = Sum_{k=0..n} [x^k](A(x)+z*x)^n for all z, where [x^k]A(x)^n denotes the coefficient of x^k in A(x)^n.
Original entry on oeis.org
1, 3, 4, -8, 0, 64, -192, -128, 2816, -7680, -13312, 157696, -352256, -1179648, 9748480, -16220160, -99614720, 630456320, -651427840, -8218214400, 41481666560, -13191086080, -667334737920, 2724661821440, 1460876083200, -53446942130176, 175607589634048, 286761410363392
Offset: 0
From the table of powers of A(x) (A100232), we see that
5^n-1 = Sum of coefficients [x^0] through [x^n] in A(x)^n:
A^1=[1,3],4,-8,0,64,-192,-128,...
A^2=[1,6,17],8,-32,64,64,-896,...
A^3=[1,9,39,75],12,-72,256,-384,...
A^4=[1,12,70,220,321],16,-128,640,...
A^5=[1,15,110,470,1165,1363],20,-200,...
A^6=[1,18,159,852,2895,5922,5777],24,...
-
a(n)=if(n==0,1,(5^n-1-sum(k=0,n,polcoeff(sum(j=0,min(k,n-1),a(j)*x^j)^n+x*O(x^k),k)))/n)
-
a(n)=if(n==0,1,if(n==1,3,if(n==2,4,-((4*n-6)*a(n-1)+20*(n-3)*a(n-2))/n)))
-
a(n)=polcoeff((1+4*x+sqrt(1+4*x+20*x^2+x^2*O(x^n)))/2,n)
Showing 1-3 of 3 results.
Comments