Original entry on oeis.org
1, 4, 26, 139, 726, 3774, 19601, 101784, 528526, 2744419, 14250626, 73997554, 384238401, 1995189564, 10360186226, 53796120699, 279340789726, 1450500069334, 7531841136401, 39109705751344, 203080369893126
Offset: 0
A100237
Secondary diagonal of triangle A100235 divided by row number: a(n) = A100235(n+1,n)/(n+1) for n >= 0.
Original entry on oeis.org
1, 4, 21, 109, 566, 2939, 15261, 79244, 411481, 2136649, 11094726, 57610279, 299146121, 1553340884, 8065850541, 41882593589, 217478818486, 1129276686019, 5863862248581, 30448587928924, 158106801893201, 820982597394929, 4263019788867846, 22136081541734159
Offset: 0
-
a[0]:=1: a[1]:=4: for n from 2 to 26 do a[n]:=5*a[n-1]+a[n-2] od: seq(a[n], n=0..21); # Zerinvary Lajos, Jul 26 2006
-
a(n)=polcoeff((1-x)/(1-5*x-x^2)+x*O(x^n),n)
-
Vec((1-x)/(1-5*x-x^2) + O(x^40)) \\ Colin Barker, Oct 13 2015
A100234
G.f. A(x) satisfies: 6^n - 1 = Sum_{k=0..n} [x^k]A(x)^n and also satisfies: (6+z)^n - (1+z)^n + z^n = Sum_{k=0..n} [x^k](A(x)+z*x)^n for all z, where [x^k]A(x)^n denotes the coefficient of x^k in A(x)^n.
Original entry on oeis.org
1, 4, 5, -15, 20, 90, -695, 1785, 3895, -53985, 196255, 121635, -4907130, 23332140, -13181145, -470127465, 2866898820, -4455872910, -44776087145, 356263904235, -873534120380, -3988869806010, 44179467566755, -147200296896765, -293052319462105, 5409366658571715
Offset: 0
From the table of powers of A(x) (A100235), we see that
6^n-1 = Sum of coefficients [x^0] through [x^n] in A(x)^n:
A^1=[1,4],5,-15,20,90,-695,1785,...
A^2=[1,8,26],10,-55,190,-245,-1690,...
A^3=[1,12,63,139],15,-120,635,-2130,...
A^4=[1,16,116,436,726],20,-210,1480,...
A^5=[1,20,185,965,2830,3774],25,-325,...
A^6=[1,24,270,1790,7335,17634,19601],30,...
-
a(n)=if(n==0,1,(6^n-1-sum(k=0,n,polcoeff(sum(j=0,min(k,n-1),a(j)*x^j)^n+x*O(x^k),k)))/n)
-
a(n)=if(n==0,1,if(n==1,4,if(n==2,5,-(3*(2*n-3)*a(n-1)+29*(n-3)*a(n-2))/n)))
-
a(n)=polcoeff((1+5*x+sqrt(1+6*x+29*x^2+x^2*O(x^n)))/2,n)
Showing 1-3 of 3 results.
Comments