cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A100235 Triangle, read by rows, of the coefficients of [x^k] in G100234(x)^n such that the row sums are 6^n-1 for n>0, where G100234(x) is the g.f. of A100234.

Original entry on oeis.org

1, 1, 4, 1, 8, 26, 1, 12, 63, 139, 1, 16, 116, 436, 726, 1, 20, 185, 965, 2830, 3774, 1, 24, 270, 1790, 7335, 17634, 19601, 1, 28, 371, 2975, 15505, 52444, 106827, 101784, 1, 32, 488, 4584, 28860, 124424, 358748, 633952, 528526, 1, 36, 621, 6681, 49176, 256194
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2004

Keywords

Comments

The main diagonal forms A100236. Secondary diagonal is: T(n+1,n) = (n+1)*A100237(n). More generally, if g.f. F(x) satisfies: m^n-b^n = Sum_{k=0..n} [x^k]F(x)^n, then F(x) also satisfies: (m+z)^n - (b+z)^n + z^n = Sum_{k=0..n} [x^k](F(x)+z*x)^n for all z and F(x)=(1+(m-1)*x+sqrt(1+2*(m-2*b-1)*x+(m^2-2*m+4*b+1)*x^2))/2; the triangle formed from powers of F(x) will have the g.f.: G(x,y)=(1-2*x*y+m*x^2*y^2)/((1-x*y)*(1-(m-1)*x*y-x^2*y^2-x*(1-x*y))).

Examples

			Rows begin:
[1],
[1,4],
[1,8,26],
[1,12,63,139],
[1,16,116,436,726],
[1,20,185,965,2830,3774],
[1,24,270,1790,7335,17634,19601],
[1,28,371,2975,15505,52444,106827,101784],
[1,32,488,4584,28860,124424,358748,633952,528526],...
where row sums form 6^n-1 for n>0:
6^1-1 = 1+4 = 5
6^2-1 = 1+8+26 = 35
6^3-1 = 1+12+63+139 = 215
6^4-1 = 1+16+116+436+726 = 1295
6^5-1 = 1+20+185+965+2830+3774 = 7775.
The main diagonal forms A100236 = [1,4,26,139,726,3774,...],
where Sum_{n>=1} A100236(n)/n*x^n = log((1-x)/(1-5*x-x^2)).
		

Crossrefs

Programs

  • Mathematica
    row[n_] := CoefficientList[ Series[ (1 + 5*x + Sqrt[1 + 6*x + 29*x^2])^n/2^n, {x, 0, n}], x]; Flatten[ Table[ row[n], {n, 0, 9}]](* Jean-François Alcover, May 11 2012, after PARI *)
  • PARI
    T(n,k,m=6)=if(n
    				

Formula

G.f.: A(x, y)=(1-2*x*y+6*x^2*y^2)/((1-x*y)*(1-5*x*y-x^2*y^2-x*(1-x*y))).

A100237 Secondary diagonal of triangle A100235 divided by row number: a(n) = A100235(n+1,n)/(n+1) for n >= 0.

Original entry on oeis.org

1, 4, 21, 109, 566, 2939, 15261, 79244, 411481, 2136649, 11094726, 57610279, 299146121, 1553340884, 8065850541, 41882593589, 217478818486, 1129276686019, 5863862248581, 30448587928924, 158106801893201, 820982597394929, 4263019788867846, 22136081541734159
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2004

Keywords

Comments

G.f. equals the ratio of the g.f.s of any two adjacent diagonals of triangle A100235.
a(n) is the number of compositions of n when there are 4 types of 1 and 5 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

First differences of A052918.
Cf. A052918.

Programs

  • Maple
    a[0]:=1: a[1]:=4: for n from 2 to 26 do a[n]:=5*a[n-1]+a[n-2] od: seq(a[n], n=0..21); # Zerinvary Lajos, Jul 26 2006
  • PARI
    a(n)=polcoeff((1-x)/(1-5*x-x^2)+x*O(x^n),n)
    
  • PARI
    Vec((1-x)/(1-5*x-x^2) + O(x^40)) \\ Colin Barker, Oct 13 2015

Formula

a(n) = 5*a(n-1) + a(n-2) for n>1, with a(0)=1, a(1)=4.
G.f.: (1-x)/(1-5*x-x^2).
Numerators in continued fraction [1, 4, 5, 5, 5, ...]. Continued fraction [1, 4, 5, 5, 5, ...] = 0.807417596433..., the inradius of a right triangle with legs 2 and 5. n-th convergent (n>0) to [1, 4, 5, 5, 5, ...] = A100237(n)/A052918(n), the first few being 1/1, 4/5, 21/26, 109/135, ... - Gary W. Adamson, Dec 21 2007
If p[1]=4, p[i]=5, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=det A. - Milan Janjic, Apr 29 2010
a(n) = (2^(-1-n)*((5-sqrt(29))^n*(-3+sqrt(29)) + (3+sqrt(29))*(5+sqrt(29))^n))/sqrt(29). - Colin Barker, Oct 13 2015
Showing 1-2 of 2 results.