A100235 Triangle, read by rows, of the coefficients of [x^k] in G100234(x)^n such that the row sums are 6^n-1 for n>0, where G100234(x) is the g.f. of A100234.
1, 1, 4, 1, 8, 26, 1, 12, 63, 139, 1, 16, 116, 436, 726, 1, 20, 185, 965, 2830, 3774, 1, 24, 270, 1790, 7335, 17634, 19601, 1, 28, 371, 2975, 15505, 52444, 106827, 101784, 1, 32, 488, 4584, 28860, 124424, 358748, 633952, 528526, 1, 36, 621, 6681, 49176, 256194
Offset: 0
Examples
Rows begin: [1], [1,4], [1,8,26], [1,12,63,139], [1,16,116,436,726], [1,20,185,965,2830,3774], [1,24,270,1790,7335,17634,19601], [1,28,371,2975,15505,52444,106827,101784], [1,32,488,4584,28860,124424,358748,633952,528526],... where row sums form 6^n-1 for n>0: 6^1-1 = 1+4 = 5 6^2-1 = 1+8+26 = 35 6^3-1 = 1+12+63+139 = 215 6^4-1 = 1+16+116+436+726 = 1295 6^5-1 = 1+20+185+965+2830+3774 = 7775. The main diagonal forms A100236 = [1,4,26,139,726,3774,...], where Sum_{n>=1} A100236(n)/n*x^n = log((1-x)/(1-5*x-x^2)).
Programs
-
Mathematica
row[n_] := CoefficientList[ Series[ (1 + 5*x + Sqrt[1 + 6*x + 29*x^2])^n/2^n, {x, 0, n}], x]; Flatten[ Table[ row[n], {n, 0, 9}]](* Jean-François Alcover, May 11 2012, after PARI *)
-
PARI
T(n,k,m=6)=if(n
Formula
G.f.: A(x, y)=(1-2*x*y+6*x^2*y^2)/((1-x*y)*(1-5*x*y-x^2*y^2-x*(1-x*y))).
Comments