cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A052918 a(0) = 1, a(1) = 5, a(n+1) = 5*a(n) + a(n-1).

Original entry on oeis.org

1, 5, 26, 135, 701, 3640, 18901, 98145, 509626, 2646275, 13741001, 71351280, 370497401, 1923838285, 9989688826, 51872282415, 269351100901, 1398627786920, 7262490035501, 37711077964425, 195817879857626
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A087130(n)^2 - 29*a(n-1)^2 = 4*(-1)^n, n >= 1. - Gary W. Adamson, Jul 01 2003, corrected Oct 07 2008, corrected by Jianing Song, Feb 01 2019
a(p-1) == 29^((p-1)/2) (mod p), for odd primes p. - Gary W. Adamson, Feb 22 2009 [See A087475 for more info about this congruence. - Jason Yuen, Apr 05 2025]
For more information about this type of recurrence, follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010
Binomial transform of A015523. - Johannes W. Meijer, Aug 01 2010
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 5's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,5} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Feb 15 2023: (Start)
Also called the 5-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 5 kinds of squares available. (End)

Crossrefs

Row 5 of A073133, A172236, and A352361.
Cf. A087130, A099365 (squares), A100237, A175184 (Pisano periods), A201005 (prime subsequence).

Programs

  • GAP
    a:=[1,5];; for n in [3..30] do a[n]:=5*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Oct 16 2019
  • Magma
    I:=[1, 5]; [n le 2 select I[n] else 5*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 23 2013
    
  • Magma
    R:=PowerSeriesRing(Integers(), 22); Coefficients(R!( 1/(1 - 5*x - x^2) )); // Marius A. Burtea, Oct 16 2019
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Z,Z,Z,Z,Prod(Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..30);
    a[0]:=1: a[1]:=5: for n from 2 to 26 do a[n]:=5*a[n-1]+a[n-2] od: seq(a[n], n=0..30); # Zerinvary Lajos, Jul 26 2006
    with(combinat):a:=n->fibonacci(n,5):seq(a(n),n=1..30); # Zerinvary Lajos, Dec 07 2008
  • Mathematica
    LinearRecurrence[{5, 1}, {1, 5}, 30] (* Vincenzo Librandi, Feb 23 2013 *)
    Table[Fibonacci[n+1, 5], {n,0,30}] (* Vladimir Reshetnikov, May 08 2016 *)
  • PARI
    Vec(1/(1-5*x-x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011
    
  • Sage
    [lucas_number1(n,5,-1) for n in range(1, 22)] # Zerinvary Lajos, Apr 24 2009
    

Formula

G.f.: 1/(1 - 5*x - x^2).
a(3n) = A041047(5n), a(3n+1) = A041047(5n+3), a(3n+2) = 2*A041047(5n+4). - Henry Bottomley, May 10 2000
a(n) = Sum_{alpha=RootOf(-1+5*z+z^2)} (1/29)*(5+2*alpha)*alpha^(-1-n).
a(n-1) = (((5 + sqrt(29))/2)^n - ((5 - sqrt(29))/2)^n)/sqrt(29). - Gary W. Adamson, Jul 01 2003
a(n) = U(n, 5*i/2)*(-i)^n with i^2 = -1 and Chebyshev's U(n, x/2) = S(n, x) polynomials. See triangle A049310.
Let M = {{0, 1}, {1, 5}}, then a(n) is the lower-right term of M^n. - Roger L. Bagula, May 29 2005
a(n) = F(n, 5), the n-th Fibonacci polynomial evaluated at x = 5. - T. D. Noe, Jan 19 2006
a(n) = denominator of n-th convergent to [1, 4, 5, 5, 5, ...], for n > 0. Continued fraction [1, 4, 5, 5, 5, ...] = 0.807417596..., the inradius of a right triangle with legs 2 and 5. n-th convergent = A100237(n)/A052918(n), the first few being: 1/1, 4/5, 21/26, 109/135, 566/701, ... - Gary W. Adamson, Dec 21 2007
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2n+1) = 5*A097781(n), a(2n) = A097835(n).
Limit_{k->oo} a(n+k)/a(k) = (A087130(n) + a(n-1)*sqrt(29))/2.
Limit_{n->oo} A087130(n)/a(n-1) = sqrt(29). (End)
From L. Edson Jeffery, Jan 07 2012: (Start)
Define the 2 X 2 matrix A = {{1, 1}, {5, 4}}. Then:
a(n) is the upper-left term of (1/5)*(A^(n+2) - A^(n+1));
a(n) is the upper-right term of A^(n+1);
a(n) is the lower-left term of (1/5)*A^(n+1);
a(n) is the lower-right term of (Sum_{k=0..n} A^k). (End)
Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = (sqrt(29) - 5)/2. - Vladimir Shevelev, Feb 23 2013
G.f.: x/(1 - 5*x - x^2) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (m*k + 5 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024

A100235 Triangle, read by rows, of the coefficients of [x^k] in G100234(x)^n such that the row sums are 6^n-1 for n>0, where G100234(x) is the g.f. of A100234.

Original entry on oeis.org

1, 1, 4, 1, 8, 26, 1, 12, 63, 139, 1, 16, 116, 436, 726, 1, 20, 185, 965, 2830, 3774, 1, 24, 270, 1790, 7335, 17634, 19601, 1, 28, 371, 2975, 15505, 52444, 106827, 101784, 1, 32, 488, 4584, 28860, 124424, 358748, 633952, 528526, 1, 36, 621, 6681, 49176, 256194
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2004

Keywords

Comments

The main diagonal forms A100236. Secondary diagonal is: T(n+1,n) = (n+1)*A100237(n). More generally, if g.f. F(x) satisfies: m^n-b^n = Sum_{k=0..n} [x^k]F(x)^n, then F(x) also satisfies: (m+z)^n - (b+z)^n + z^n = Sum_{k=0..n} [x^k](F(x)+z*x)^n for all z and F(x)=(1+(m-1)*x+sqrt(1+2*(m-2*b-1)*x+(m^2-2*m+4*b+1)*x^2))/2; the triangle formed from powers of F(x) will have the g.f.: G(x,y)=(1-2*x*y+m*x^2*y^2)/((1-x*y)*(1-(m-1)*x*y-x^2*y^2-x*(1-x*y))).

Examples

			Rows begin:
[1],
[1,4],
[1,8,26],
[1,12,63,139],
[1,16,116,436,726],
[1,20,185,965,2830,3774],
[1,24,270,1790,7335,17634,19601],
[1,28,371,2975,15505,52444,106827,101784],
[1,32,488,4584,28860,124424,358748,633952,528526],...
where row sums form 6^n-1 for n>0:
6^1-1 = 1+4 = 5
6^2-1 = 1+8+26 = 35
6^3-1 = 1+12+63+139 = 215
6^4-1 = 1+16+116+436+726 = 1295
6^5-1 = 1+20+185+965+2830+3774 = 7775.
The main diagonal forms A100236 = [1,4,26,139,726,3774,...],
where Sum_{n>=1} A100236(n)/n*x^n = log((1-x)/(1-5*x-x^2)).
		

Crossrefs

Programs

  • Mathematica
    row[n_] := CoefficientList[ Series[ (1 + 5*x + Sqrt[1 + 6*x + 29*x^2])^n/2^n, {x, 0, n}], x]; Flatten[ Table[ row[n], {n, 0, 9}]](* Jean-François Alcover, May 11 2012, after PARI *)
  • PARI
    T(n,k,m=6)=if(n
    				

Formula

G.f.: A(x, y)=(1-2*x*y+6*x^2*y^2)/((1-x*y)*(1-5*x*y-x^2*y^2-x*(1-x*y))).
Showing 1-2 of 2 results.