A100232 Triangle, read by rows, of the coefficients of [x^k] in G100231(x)^n such that the row sums are 5^n-1 for n>0, where G100231(x) is the g.f. of A100231.
1, 1, 3, 1, 6, 17, 1, 9, 39, 75, 1, 12, 70, 220, 321, 1, 15, 110, 470, 1165, 1363, 1, 18, 159, 852, 2895, 5922, 5777, 1, 21, 217, 1393, 5943, 16807, 29267, 24475, 1, 24, 284, 2120, 10822, 38536, 93468, 141688, 103681, 1, 27, 360, 3060, 18126, 77274, 236748
Offset: 0
Examples
Rows begin: [1], [1,3], [1,6,17], [1,9,39,75], [1,12,70,220,321], [1,15,110,470,1165,1363], [1,18,159,852,2895,5922,5777], [1,21,217,1393,5943,16807,29267,24475], [1,24,284,2120,10822,38536,93468,141688,103681],... where row sums form 5^n-1 for n>0: 5^1-1 = 1+3 = 4 5^2-1 = 1+6+17 = 24 5^3-1 = 1+9+39+75 = 124 5^4-1 = 1+12+70+220+321 = 624 5^5-1 = 1+15+110+470+1165+1363 = 3124. The main diagonal forms A100233 = [1,3,17,75,321,1363,5777,...], where Sum_{n>=1} A100233(n)/n*x^n = log((1-x)/(1-4*x-x^2)).
Programs
-
PARI
T(n,k,m=5)=if(n
Formula
G.f.: A(x, y)=(1-2*x*y+5*x^2*y^2)/((1-x*y)*(1-4*x*y-x^2*y^2-x*(1-x*y))).
Comments