Original entry on oeis.org
1, 4, 26, 139, 726, 3774, 19601, 101784, 528526, 2744419, 14250626, 73997554, 384238401, 1995189564, 10360186226, 53796120699, 279340789726, 1450500069334, 7531841136401, 39109705751344, 203080369893126
Offset: 0
A100232
Triangle, read by rows, of the coefficients of [x^k] in G100231(x)^n such that the row sums are 5^n-1 for n>0, where G100231(x) is the g.f. of A100231.
Original entry on oeis.org
1, 1, 3, 1, 6, 17, 1, 9, 39, 75, 1, 12, 70, 220, 321, 1, 15, 110, 470, 1165, 1363, 1, 18, 159, 852, 2895, 5922, 5777, 1, 21, 217, 1393, 5943, 16807, 29267, 24475, 1, 24, 284, 2120, 10822, 38536, 93468, 141688, 103681, 1, 27, 360, 3060, 18126, 77274, 236748
Offset: 0
Rows begin:
[1],
[1,3],
[1,6,17],
[1,9,39,75],
[1,12,70,220,321],
[1,15,110,470,1165,1363],
[1,18,159,852,2895,5922,5777],
[1,21,217,1393,5943,16807,29267,24475],
[1,24,284,2120,10822,38536,93468,141688,103681],...
where row sums form 5^n-1 for n>0:
5^1-1 = 1+3 = 4
5^2-1 = 1+6+17 = 24
5^3-1 = 1+9+39+75 = 124
5^4-1 = 1+12+70+220+321 = 624
5^5-1 = 1+15+110+470+1165+1363 = 3124.
The main diagonal forms A100233 = [1,3,17,75,321,1363,5777,...],
where Sum_{n>=1} A100233(n)/n*x^n = log((1-x)/(1-4*x-x^2)).
A100231
G.f. A(x) satisfies: 5^n - 1 = Sum_{k=0..n} [x^k]A(x)^n and also satisfies: (5+z)^n - (1+z)^n + z^n = Sum_{k=0..n} [x^k](A(x)+z*x)^n for all z, where [x^k]A(x)^n denotes the coefficient of x^k in A(x)^n.
Original entry on oeis.org
1, 3, 4, -8, 0, 64, -192, -128, 2816, -7680, -13312, 157696, -352256, -1179648, 9748480, -16220160, -99614720, 630456320, -651427840, -8218214400, 41481666560, -13191086080, -667334737920, 2724661821440, 1460876083200, -53446942130176, 175607589634048, 286761410363392
Offset: 0
From the table of powers of A(x) (A100232), we see that
5^n-1 = Sum of coefficients [x^0] through [x^n] in A(x)^n:
A^1=[1,3],4,-8,0,64,-192,-128,...
A^2=[1,6,17],8,-32,64,64,-896,...
A^3=[1,9,39,75],12,-72,256,-384,...
A^4=[1,12,70,220,321],16,-128,640,...
A^5=[1,15,110,470,1165,1363],20,-200,...
A^6=[1,18,159,852,2895,5922,5777],24,...
-
a(n)=if(n==0,1,(5^n-1-sum(k=0,n,polcoeff(sum(j=0,min(k,n-1),a(j)*x^j)^n+x*O(x^k),k)))/n)
-
a(n)=if(n==0,1,if(n==1,3,if(n==2,4,-((4*n-6)*a(n-1)+20*(n-3)*a(n-2))/n)))
-
a(n)=polcoeff((1+4*x+sqrt(1+4*x+20*x^2+x^2*O(x^n)))/2,n)
Showing 1-3 of 3 results.
Comments