A100268 Primes of the form x^4 + y^4 with x^2 + y^2 and x+y also prime.
2, 17, 97, 257, 641, 1297, 4177, 4721, 12401, 15937, 16561, 38561, 65537, 83537, 89041, 105601, 140321, 160081, 204481, 283937, 284881, 384817, 391921, 411361, 462097, 471617, 531457, 643217, 824641, 838561, 1049201, 1089841, 1342897
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Generalized Fermat Number
Programs
-
Mathematica
n=2; pwr=2^n; xmax=2; r=Range[xmax]; num=r^pwr+r^pwr; Table[While[p=Min[num]; x=Position[num, p][[1, 1]]; y=r[[x]]; r[[x]]++; num[[x]]=x^pwr+r[[x]]^pwr; If[x==xmax, xmax++; AppendTo[r, xmax+1]; AppendTo[num, xmax^pwr+(xmax+1)^pwr]]; allPrime=True; k=0; While[k<=n&&allPrime, allPrime=PrimeQ[x^2^k+y^2^k]; k++ ]; !allPrime]; p, {40}] With[{nn=40},Select[Union[Transpose[Select[Total/@{#^4,#^2,#}&/@ Tuples[ Range[nn],2],AllTrue[#,PrimeQ]&]][[1]]],#<=nn^4+1&]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 23 2015 *)
Comments