cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A101617 The trinomial transform (A027907) gives powers of 3, while the trinomial transform of this sequence shift one place left gives powers of 5.

Original entry on oeis.org

1, 1, 1, 3, -3, 19, -43, 139, -355, 995, -2587, 6907, -17939, 46931, -121419, 314603, -811203, 2091459, -5379963, 13833179, -35527795, 91210035, -234020267, 600258507, -1539135779, 3945762211, -10113490139, 25918908603, -66417608403, 170182721299, -436032111883, 1117120911019
Offset: 0

Views

Author

Paul D. Hanna, Dec 09 2004

Keywords

Examples

			3^3 = 1*(1) + 3*(1) + 6*(1) + 7*(3) + 6*(-3) + 3*(19) + 1*(-43).
5^3 = 1*(1) + 3*(1) + 6*(3) + 7*(-3) + 6*(19) + 3*(-43) + 1*(139).
In general, a sequence A with the property that the
trinomial transform of A gives powers of P, while the
trinomial transform of LSHIFT(A) gives powers of Q
has the g.f.: N(x)/D(x) where
N(x)=(1+3*x-(Q-3)*x^2-(P+Q-2)*x^3) and
D(x)=(1+2*x-(P+Q-3)*x^2-(P+Q-2)*x^3+(P-1)*(Q-1)*x^4).
		

Crossrefs

Programs

  • Mathematica
    nn:=31; CoefficientList[Series[(1 + 3*x - 2*x^2 - 6*x^3)/(1 + 2*x - 5*x
    ^2 - 6*x^3 + 8*x^4),{x,0,nn}],x] (* Georg Fischer, Apr 17 2020 *)
  • PARI
    {a(n)=local(P=3,Q=5,V=[1,1]);if(n>1, for(m=1,n, V=concat(V,P^m-sum(k=0,2*m-1,polcoeff((1+x+x^2)^m+x*O(x^k),k)*V[k+1])); V=concat(V,Q^m-sum(k=0,2*m-1,polcoeff((1+x+x^2)^m+x*O(x^k),k)*V[k+2])); ));V[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: A(x) = (1 + 3*x - 2*x^2 - 6*x^3)/(1 + 2*x - 5*x^2 - 6*x^3 + 8*x^4). [corrected by Georg Fischer, Apr 17 2020]
3^n = Sum_{k=0..2*n} A027907(n, k)*a(k) for n>=0 and
5^n = Sum_{k=0..2*n} A027907(n, k)*a(k+1) for n>=0.
a(n) = (-1)^n*A006131(n-1) + (1/3)[(-2)^n + 2]. - Ralf Stephan, May 16 2007
Showing 1-1 of 1 results.