A100330 Positive integers k such that k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 is prime.
1, 2, 3, 5, 6, 13, 14, 17, 26, 31, 38, 40, 46, 56, 60, 61, 66, 68, 72, 73, 80, 87, 89, 93, 95, 115, 122, 126, 128, 146, 149, 156, 158, 160, 163, 180, 186, 192, 203, 206, 208, 220, 221, 235, 237, 238, 251, 264, 266, 280, 282, 290, 294, 300, 303, 320, 341, 349, 350
Offset: 1
Keywords
Examples
2 is in the sequence because 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2 + 1 = 127, which is prime.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[n: n in [1..500]| IsPrime(n^6 + n^5 + n^4 + n^3 + n^2 + n + 1)]; // Vincenzo Librandi, Feb 08 2014
-
Maple
A100330 := proc(n) option remember; local a; if n = 1 then 1; else for a from procname(n-1)+1 do if isprime(numtheory[cyclotomic](7,a)) then return a; end if; end do: end if; end proc: seq(A100330(n),n=1..30) ; # R. J. Mathar, Feb 07 2014
-
Mathematica
Select[Range[350], PrimeQ[Sum[ #^i, {i, 0, 6}]] &] (* Ray Chandler, Nov 17 2004 *) Do[If[PrimeQ[n^6 + n^5 + n^4 + n^3 + n^2 + n + 1], Print[n]], {n, 1, 500}] (* Vincenzo Librandi, Feb 08 2014 *)
-
PARI
is(n)=isprime(polcyclo(7,n)) \\ Charles R Greathouse IV, Apr 28 2015
Comments