cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100346 Number of compositions of n into divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 6, 2, 25, 2, 56, 20, 129, 2, 1628, 2, 742, 450, 5272, 2, 45316, 2, 83344, 3321, 29967, 2, 5105722, 572, 200390, 26426, 5469759, 2, 154004511, 2, 47350056, 226020, 9262157, 51886, 15140335650, 2, 63346598, 2044895, 14700095926, 2, 185493291001, 2
Offset: 0

Views

Author

Vladeta Jovovic, Dec 29 2004

Keywords

Crossrefs

Cf. A018818.

Programs

  • Maple
    with(numtheory): G:=proc(n) local DV: DV:=divisors(n): 1/(1-sum(x^DV[j], j=1..tau(n))) end: seq(coeff(series(G(n), x, 80), x, n), n=0..44); # Emeric Deutsch, Feb 16 2005
    # second Maple program:
    a:= proc(n) option remember; local b, l;
          l, b:= numtheory[divisors](n),
          proc(m) option remember; `if`(m=0, 1,
             add(`if`(j>m, 0, b(m-j)), j=l))
          end; b(n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 28 2017
  • Mathematica
    a[n_] := SeriesCoefficient[1/(1-DivisorSum[n, x^#&]), {x, 0, n}]; Array[a, 50] (* Jean-François Alcover, Apr 06 2017 *)

Formula

Coefficient of x^n in expansion of 1/(1-Sum_{d divides n} x^d ).

Extensions

More terms from Emeric Deutsch, Feb 16 2005
a(0)=1 prepended by Alois P. Heinz, Nov 08 2023