cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100347 Number of compositions of n into parts all relatively prime to n.

Original entry on oeis.org

1, 1, 1, 3, 3, 15, 3, 63, 21, 125, 36, 1023, 25, 4095, 314, 3357, 987, 65535, 207, 262143, 2782, 164498, 17114, 4194303, 1705, 11349545, 119620, 7256527, 209376, 268435455, 1261, 1073741823, 2178309, 276465135, 5687872, 8460492865, 114575, 68719476735
Offset: 0

Views

Author

Vladeta Jovovic, Dec 29 2004

Keywords

Examples

			a(4) = 3 because among the eight compositions of 4 (namely, 1111, 112, 121, 211, 22, 13, 31 and 4) only 1111, 13 and 31 have parts all relatively prime to 4.
		

Crossrefs

Cf. A057562.

Programs

  • Maple
    RP:=proc(n) local A, j: A:={}: for j from 1 to n do if gcd(j, n)=1 then A:=A union {j} fi od: A end: a:=proc(n) local S, j, ser: S:=1/(1-sum(x^RP(n)[j], j=1..nops(RP(n)))): ser:=series(S, x=0, n+5): coeff(ser, x^n): end: 1, seq(a(n), n=1..40); # Emeric Deutsch, Jul 25 2005
    # second Maple program:
    b:= proc(n, m) option remember; `if`(n=0, 1,
          add(`if`(igcd(i, m)>1, 0, b(n-i, m)), i=1..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50); # Alois P. Heinz, Aug 30 2014
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, 1, Sum[If[GCD[i, m] > 1, 0, b[n - i, m]], {i, 1, n}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)

Formula

Coefficient of x^n in expansion of 1/(1-Sum_{d : gcd(d, n)=1} x^d ).

Extensions

More terms from Emeric Deutsch, Jul 25 2005
a(0) from Alois P. Heinz, Aug 30 2014