cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100371 a(n) = 2^phi(n) - 1 = A066781(n) - 1.

Original entry on oeis.org

1, 1, 3, 3, 15, 3, 63, 15, 63, 15, 1023, 15, 4095, 63, 255, 255, 65535, 63, 262143, 255, 4095, 1023, 4194303, 255, 1048575, 4095, 262143, 4095, 268435455, 255, 1073741823, 65535, 1048575, 65535, 16777215, 4095, 68719476735, 262143, 16777215, 65535
Offset: 1

Views

Author

Labos Elemer, Nov 30 2004

Keywords

Comments

Number of nonempty subsets of reduced residue system [RRS(n)] modulo n.

Crossrefs

Programs

  • Maple
    A100371:=n->2^numtheory[phi](n)-1: seq(A100371(n), n=1..60); # Wesley Ivan Hurt, Apr 14 2017
  • Mathematica
    Table[2^EulerPhi[n] - 1, {n, 1, 50}]
  • PARI
    a(n) = 2^eulerphi(n) - 1; \\ Michel Marcus, Apr 14 2017
    
  • Python
    from sympy import totient
    def a(n): return 2**totient(n) - 1 # Indranil Ghosh, Apr 14 2017

Formula

a(n) = Sum_{i=1..n} binomial(phi(n), i). - Enrique Pérez Herrero, Mar 10 2012

Extensions

Entry revised by N. J. A. Sloane, Jun 07 2013