cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100376 a(n) is the largest number x such that for m=n to n+x-1, A006530(m) increases.

Original entry on oeis.org

2, 1, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 3, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 1, 1, 2, 1, 5, 4, 3, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 3
Offset: 2

Views

Author

Labos Elemer, Dec 09 2004

Keywords

Comments

A006530(m) is the greatest prime factor (gpf) of m.
If p is an odd prime, a(p)=1, because the largest prime factor of p+1 is smaller than p.

Examples

			a(8)=4 because the largest prime factors of 8,9,10,11 are 2,3,5,11; but gpf(12)=3.
From _Michael De Vlieger_, Jul 30 2017: (Start)
Value  First position
   1         3
   2         2
   3         9
   4         8
   5        90
   6       168
   7      9352
   8     46189
   9    721971
  10    721970
(End)
		

Crossrefs

Programs

  • Mathematica
    With[{s = Differences@ Array[FactorInteger[#][[-1, 1]] &, 115]}, Table[1 + LengthWhile[Drop[s, n], # > 0 &], {n, Length@ s - 10}]] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    a(n) = {m = n+1; gpf = vecmax(factor(n)[,1]); while((ngpf=vecmax(factor(m)[,1])) > gpf, m++; gpf = ngpf;); m - n;} \\ Michel Marcus, Jul 25 2017

Extensions

Edited by Don Reble, Jun 13 2007