A100405 Number of partitions of n where every part appears more than two times.
1, 0, 0, 1, 1, 1, 2, 1, 2, 3, 3, 3, 7, 5, 6, 11, 10, 10, 17, 15, 20, 26, 25, 29, 44, 41, 47, 63, 67, 72, 99, 97, 114, 143, 148, 168, 216, 216, 248, 306, 328, 358, 443, 462, 527, 629, 665, 739, 898, 936, 1055, 1238, 1330, 1465, 1727, 1837, 2055, 2366, 2543, 2808, 3274
Offset: 0
Examples
a(6)=2 because we have [2,2,2] and [1,1,1,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..5000 from Vaclav Kotesovec)
Programs
-
Maple
G:=product((1+x^(3*k)/(1-x^k)),k=1..30): Gser:=series(G,x=0,80): seq(coeff(Gser,x,n),n=0..70); # Emeric Deutsch, Aug 06 2005 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1), j=[0, $3..iquo(n, i)]))) end: a:= n-> b(n$2): seq(a(n), n=0..70); # Alois P. Heinz, Aug 20 2019
-
Mathematica
nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(3*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 28 2015 *)
Formula
G.f.: Product_{k>0} (1+x^(3*k)/(1-x^k)). More generally, g.f. for number of partitions of n where every part appears more than m times is Product_{k>0} (1+x^((m+1)*k)/(1-x^k)).
a(n) ~ sqrt(Pi^2 + 6*c) * exp(sqrt((2*Pi^2/3 + 4*c)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-3*x)) dx = -0.77271248407593487127235205445116662610863126869049971822566... . - Vaclav Kotesovec, Jan 05 2016
Extensions
More terms from Emeric Deutsch, Aug 06 2005
a(0)=1 prepended by Alois P. Heinz, Aug 20 2019