cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100405 Number of partitions of n where every part appears more than two times.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 1, 2, 3, 3, 3, 7, 5, 6, 11, 10, 10, 17, 15, 20, 26, 25, 29, 44, 41, 47, 63, 67, 72, 99, 97, 114, 143, 148, 168, 216, 216, 248, 306, 328, 358, 443, 462, 527, 629, 665, 739, 898, 936, 1055, 1238, 1330, 1465, 1727, 1837, 2055, 2366, 2543, 2808, 3274
Offset: 0

Views

Author

Vladeta Jovovic, Jan 11 2005

Keywords

Examples

			a(6)=2 because we have [2,2,2] and [1,1,1,1,1,1].
		

Crossrefs

Programs

  • Maple
    G:=product((1+x^(3*k)/(1-x^k)),k=1..30): Gser:=series(G,x=0,80): seq(coeff(Gser,x,n),n=0..70); # Emeric Deutsch, Aug 06 2005
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1), j=[0, $3..iquo(n, i)])))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..70);  # Alois P. Heinz, Aug 20 2019
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(3*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 28 2015 *)

Formula

G.f.: Product_{k>0} (1+x^(3*k)/(1-x^k)). More generally, g.f. for number of partitions of n where every part appears more than m times is Product_{k>0} (1+x^((m+1)*k)/(1-x^k)).
a(n) ~ sqrt(Pi^2 + 6*c) * exp(sqrt((2*Pi^2/3 + 4*c)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-3*x)) dx = -0.77271248407593487127235205445116662610863126869049971822566... . - Vaclav Kotesovec, Jan 05 2016

Extensions

More terms from Emeric Deutsch, Aug 06 2005
a(0)=1 prepended by Alois P. Heinz, Aug 20 2019