A100412 a(n) = 8*10^n - 7.
1, 73, 793, 7993, 79993, 799993, 7999993, 79999993, 799999993, 7999999993, 79999999993, 799999999993, 7999999999993, 79999999999993, 799999999999993, 7999999999999993, 79999999999999993, 799999999999999993
Offset: 0
Examples
793 is in the sequence because 793 is 397th odd number. 1 is in the sequence because 1 is the 1st odd number. - _M. F. Hasler_, Nov 03 2012
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Programs
-
Magma
[8*10^n -7: n in [0..20]]; // G. C. Greubel, Apr 14 2023
-
Mathematica
Table[8*10^n-7, {n,0,20}]
-
Maxima
A100412(n):=8*10^n-7$ makelist(A100412(n),n,0,17); /* Martin Ettl, Nov 08 2012 */
-
PARI
Vec((1+62*x)/((1-x)*(1-10*x)) + O(x^100)) \\ Colin Barker, Oct 14 2014
-
SageMath
[8*10^n -7 for n in range(21)] # G. C. Greubel, Apr 14 2023
Formula
From Colin Barker, Oct 14 2014: (Start)
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3).
G.f.: (1+62*x)/((1-x)*(1-10*x)). (End)
E.g.f.: 8*exp(10*x) - 7*exp(x). - G. C. Greubel, Apr 14 2023
Extensions
Edited and extended to offset 0 by M. F. Hasler, Nov 03 2012
Comments