cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100418 Numbers k such that 30*k + {1,11,13,17,19,23,29} are all prime.

Original entry on oeis.org

49, 34083, 41545, 48713, 140609, 524027, 616812, 855281, 1314397, 1324750, 1636152, 2281293, 2927134, 3401412, 3605413, 4989341, 5212221, 5284979, 5406303, 5645269, 6141254, 6342728, 7231434, 7347697, 7637329, 8027068, 8161657, 8372756, 8392776, 8567216, 8986096, 9145563
Offset: 1

Views

Author

Ferenc Adorjan (fadorjan(AT)freemail.hu), Nov 19 2004

Keywords

Comments

Values are 0 mod 7.
From Peter Munn, Sep 06 2023: (Start)
In each case, the 7 primes are necessarily consecutive.
As A065706 demonstrates, many intervals of 27 integers contain 8 primes, but only A364678(30) = 7 primes can occur between adjacent positive multiples of 30. This is because there are 8 values {1,7,11,13,17,19,23,29} coprime to 30, but they cover every residue class modulo 7, which means at least one of 30*k + {1,7,11,13,17,19,23,29} is divisible by 7.
1 and 29 are in the same residue class, but if we remove any of the other coprime integers there is a class that is not represented in the set. For this sequence, we remove 7, so when k is a multiple of 7, none of 30*k + {1,11,13,17,19,23,29} is a multiple of 2, 3, 5 or 7 and the set can potentially be 7 consecutive primes.
The sequences for the other appropriate subsets of 7 coprime values are A100419-A100423.
(End)

Crossrefs

Programs

  • Magma
    [ n: n in [0..70000000 by 7] | forall{ q: q in [1, 11, 13, 17, 19, 23, 29] | IsPrime(30*n+q) } ]; // Klaus Brockhaus, Feb 24 2011
  • Mathematica
    Select[Range[803*10^4],AllTrue[30#+{1,11,13,17,19,23,29},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 11 2019 *)
  • PARI
    {pav7(mx)= local(wp=[1,11,13,17,19,23,29],v=[],i,j,m); for(k=1,mx, i=k*30;j=1;m=1;while(m&&(j<8),m=isprime(i+wp[j]);j+=1);if(m,v=concat(v,k))); return(v)}
    

Extensions

Edited by Don Reble, Nov 17 2005