A100430 Bisection of A002417.
1, 30, 175, 588, 1485, 3146, 5915, 10200, 16473, 25270, 37191, 52900, 73125, 98658, 130355, 169136, 215985, 271950, 338143, 415740, 505981, 610170, 729675, 865928, 1020425, 1194726, 1390455, 1609300, 1853013, 2123410, 2422371, 2751840
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(2*n+1)*Binomial(2*n+3,3): n in [0..50]]; // G. C. Greubel, Apr 09 2023
-
Mathematica
Table[(2*n+1)*Binomial[2*n+3,3], {n,0,50}] (* G. C. Greubel, Apr 09 2023 *)
-
SageMath
[(2*n+1)*binomial(2*n+3,3) for n in range(51)] # G. C. Greubel, Apr 09 2023
Formula
a(n) = (8*n^4 +28*n^3 +34*n^2 +17*n+3)/3. - Ralf Stephan, May 15 2007
From G. C. Greubel, Apr 09 2023: (Start)
a(n) = (2*n+1)*binomial(2*n+3, 3).
a(n) = (2*n+1)*A000447(n+1).
G.f.: (1 + 25*x + 35*x^2 + 3*x^3)/(1-x)^5.
E.g.f.: (1/3)*(3 + 87*x + 174*x^2 + 76*x^3 + 8*x^4)*exp(x). (End)
Extensions
More terms from Hugo Pfoertner, Nov 26 2004