A100434 Expansion of g.f. (1+x)*(3+x)/(1+6*x^2+x^4).
3, 4, -17, -24, 99, 140, -577, -816, 3363, 4756, -19601, -27720, 114243, 161564, -665857, -941664, 3880899, 5488420, -22619537, -31988856, 131836323, 186444716, -768398401, -1086679440, 4478554083, 6333631924, -26102926097, -36915112104, 152139002499, 215157040700
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,-6,0,-1).
Crossrefs
Programs
-
Magma
I:=[3,4,-17,-24]; [n le 4 select I[n] else -6*Self(n-2)-Self(n-4): n in [1..40]]; // G. C. Greubel, Apr 09 2023
-
Mathematica
LinearRecurrence[{0,-6,0,-1}, {3,4,-17,-24}, 41] (* G. C. Greubel, Apr 09 2023 *)
-
SageMath
@CachedFunction def a(n): # a = A100434 if (n<4): return (3,4,-17,-24)[n] else: return -6*a(n-2) - a(n-4) [a(n) for n in range(41)] # G. C. Greubel, Apr 09 2023
Formula
a(n) = -2*a(n-1) - 3*a(n-2) if n is even; a(n) = (4*a(n-1) - a(n-2))/3 if n is odd. - R. J. Mathar, Jun 18 2014
Comments