cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100443 Inverse binomial transform of A003418.

Original entry on oeis.org

1, 0, 1, 2, -3, 44, -215, 1014, -3647, 11528, -35919, 135530, -597179, 2850132, -13623623, 60226334, -236639535, 832756304, -2732731487, 9035612658, -33172306739, 138937617020, -615393110199, 2649206536262, -10668440765663, 40078777939224, -142523015012975
Offset: 0

Views

Author

N. J. A. Sloane, Nov 21 2004

Keywords

Crossrefs

Cf. A003418.

Programs

  • Magma
    [(&+[(-1)^(n-k)*Binomial(n,k)*Lcm([1..k]): k in [0..n]]): n in [0..50]]; // G. C. Greubel, Apr 08 2023
    
  • Mathematica
    A100443[n_]:= (-1)^n +Sum[(-1)^(n-k)*Binomial[n, k]*Apply[LCM, Range[1, k]], {k,n}];
    Table[A100443[n], {n,0,50}] (* G. C. Greubel, Apr 08 2023 *)
  • SageMath
    def A100443(n): return sum((-1)^(n-k)*binomial(n,k)*lcm(range(1,k+1)) for k in range(n+1) )
    [A100443(n) for n in range(61)] # G. C. Greubel, Apr 08 2023

Formula

a(n) = Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*A003418(j). - G. C. Greubel, Apr 08 2023