A100461 Triangle read by rows, based on array described below.
1, 1, 2, 1, 2, 4, 3, 4, 6, 8, 7, 8, 9, 12, 16, 25, 26, 27, 28, 30, 32, 49, 50, 51, 52, 55, 60, 64, 109, 110, 111, 112, 115, 120, 126, 128, 229, 230, 231, 232, 235, 240, 245, 248, 256, 481, 482, 483, 484, 485, 486, 490, 496, 504, 512, 1003, 1004, 1005, 1008, 1010, 1014, 1015, 1016, 1017, 1020, 1024
Offset: 1
Examples
Array begins: 1 2 4 8 16 32 ... * 1 2 6 12 30 ... * * 1 4 9 28 ... * * * 3 8 27 ... * * * * 7 26 ... * * * * * 25 ... and triangle begins: 1; 1, 2; 1, 2, 4; 3, 4, 6, 8; 7, 8, 9, 12, 16; 25, 26, 27, 28, 30, 32; 49, 50, 51, 52, 55, 60, 64; 109, 110, 111, 112, 115, 120, 126, 128;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
function t(n,k) // t = A100461 if k eq 1 then return 2^(n-1); else return (n-k+1)*Floor((t(n,k-1) -1)/(n-k+1)); end if; end function; [t(n,n-k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 07 2023
-
Mathematica
t[n_, k_]:= t[n, k]= If[k==1, 2^(n-1), (n-k+1)*Floor[(t[n, k-1] -1)/(n-k+1)]]; Table[t[n, n-k+1], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Apr 07 2023 *)
-
SageMath
def t(n,k): # t = A100461 if (k==1): return 2^(n-1) else: return (n-k+1)*((t(n, k-1) -1)//(n-k+1)) flatten([[t(n,n-k+1) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Apr 07 2023
Formula
Form an array t(m,n) (n >= 1, 1 <= m <= n) by: t(1,n) = 2^(n-1) for all n; t(m+1,n) = (n-m)*floor( (t(m,n) - 1)/(n-m) ) for 1 <= m <= n-1.