A100475 Prime-th recurrence with reversal at each step.
1, 2, 3, 5, 11, 13, 14, 34, 931, 7037, 95017, 3549221, 75296795, 3518502151, 34778126848, 747746329129, 13428156340222, 728260738568834, 17205012007789762
Offset: 0
Examples
a(7) = 14 because a(6) = 13, the 13th prime is 41 and reversal(41) = 14.
References
- Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 14-15, 1987.
Links
- Andrew Booker, The Nth Prime Page
- Eric Weisstein's World of Mathematics, Reversal.
- Eric Weisstein's World of Mathematics, Rosser's Theorem.
Programs
-
Mathematica
f[n_] := FromDigits[ Reverse[ IntegerDigits[ Prime[n]]]]; NestList[f, 1, 16] (* Robert G. Wilson v, Dec 02 2004 *) NestList[IntegerReverse[Prime[#]]&,1,19] (* Harvey P. Dale, May 02 2022 *)
Formula
a(n) = reversal(a(n-1)th prime).
Extensions
a(15)-a(16) from Robert G. Wilson v, Dec 02 2004
a(17)-a(18) from Paul Zimmermann, Dec 04 2004, computed thanks to Deléglise-Rivat's program; confirmed by Marc Deléglise, Dec 09 2004
Comments