A100505 Bisection of A001523.
1, 2, 8, 27, 79, 209, 512, 1183, 2604, 5504, 11240, 22277, 43003, 81098, 149769, 271404, 483439, 847681, 1464999, 2498258, 4207764, 7005688, 11538936, 18814423, 30387207, 48641220, 77205488, 121567834, 189974638, 294742961, 454164484, 695254782, 1057704607
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Programs
-
Magma
m:=200; R
:=PowerSeriesRing(Integers(), m); b:=Coefficients(R!( 1 + (&+[ x^n*(1-x^n)/(&*[(1-x^j)^2: j in [1..n]]): n in [1..m+2]]) )); A100505:= func< n | b[2*n+1] >; [A100505(n): n in [0..80]]; // G. C. Greubel, Apr 03 2023 -
Maple
seq(coeff(convert(series(1+add(-(-1)^k*x^(k*(k+1)/2),k=1..100)/(mul(1-x^k,k=1..100))^2,x,100),polynom),x,2*n),n=0..45); # (C. Ronaldo) # second Maple program: b:= proc(n, i) option remember; `if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+ add(b(n-i*j, i+1)*(j+1), j=0..n/i)) end: a:= n-> `if`(n=0, 1, b(2*n, 1)): seq(a(n), n=0..60); # Alois P. Heinz, Mar 26 2014
-
Mathematica
max = 70; s = 1 + Sum[(-1)^(k+1)*q^(k*(k+1)/2), {k, 1, Sqrt[2 max] // Ceiling}]/QPochhammer[q]^2 + O[q]^max // Normal; Partition[(List @@ s) /. q -> 1, 2][[All, 1]] (* Jean-François Alcover, Apr 04 2017 *)
-
SageMath
@CachedFunction def b(n, k): # Indranil Ghosh's code of A001523 if k>n: return 0 if n%k==0: x=1 else: x=0 return x + sum(b(n-k*j, k+1)*(j+1) for j in range(n//k + 1)) def A100505(n): return 1 if n==0 else b(2*n, 1) [A100505(n) for n in range(81)] # G. C. Greubel, Apr 03 2023
Extensions
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005