cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100505 Bisection of A001523.

Original entry on oeis.org

1, 2, 8, 27, 79, 209, 512, 1183, 2604, 5504, 11240, 22277, 43003, 81098, 149769, 271404, 483439, 847681, 1464999, 2498258, 4207764, 7005688, 11538936, 18814423, 30387207, 48641220, 77205488, 121567834, 189974638, 294742961, 454164484, 695254782, 1057704607
Offset: 0

Views

Author

N. J. A. Sloane, Nov 24 2004

Keywords

Crossrefs

Programs

  • Magma
    m:=200;
    R:=PowerSeriesRing(Integers(), m);
    b:=Coefficients(R!( 1 + (&+[ x^n*(1-x^n)/(&*[(1-x^j)^2: j in [1..n]]): n in [1..m+2]]) ));
    A100505:= func< n | b[2*n+1] >;
    [A100505(n): n in [0..80]]; // G. C. Greubel, Apr 03 2023
    
  • Maple
    seq(coeff(convert(series(1+add(-(-1)^k*x^(k*(k+1)/2),k=1..100)/(mul(1-x^k,k=1..100))^2,x,100),polynom),x,2*n),n=0..45); # (C. Ronaldo)
    # second Maple program:
    b:= proc(n, i) option remember;
          `if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+
          add(b(n-i*j, i+1)*(j+1), j=0..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(2*n, 1)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    max = 70; s = 1 + Sum[(-1)^(k+1)*q^(k*(k+1)/2), {k, 1, Sqrt[2 max] // Ceiling}]/QPochhammer[q]^2 + O[q]^max // Normal; Partition[(List @@ s) /. q -> 1, 2][[All, 1]] (* Jean-François Alcover, Apr 04 2017 *)
  • SageMath
    @CachedFunction
    def b(n, k): # Indranil Ghosh's code of A001523
        if k>n: return 0
        if n%k==0: x=1
        else: x=0
        return x + sum(b(n-k*j, k+1)*(j+1) for j in range(n//k + 1))
    def A100505(n): return 1 if n==0 else b(2*n, 1)
    [A100505(n) for n in range(81)] # G. C. Greubel, Apr 03 2023

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005