cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100532 The first four numbers of this sequence are the primes 2,3,5,7. The other terms are calculated by adding the previous four terms.

Original entry on oeis.org

2, 3, 5, 7, 17, 32, 61, 117, 227, 437, 842, 1623, 3129, 6031, 11625, 22408, 43193, 83257, 160483, 309341, 596274, 1149355, 2215453, 4270423, 8231505, 15866736, 30584117, 58952781, 113635139, 219038773, 422210810, 813837503, 1568722225, 3023809311, 5828579849
Offset: 1

Views

Author

Parthasarathy Nambi, Nov 24 2004

Keywords

Examples

			The fifth term is 2 + 3 + 5 + 7 = 17.
		

Crossrefs

Programs

  • Magma
    [n le 4 select NthPrime(n) else Self(n-1)+Self(n-2)+Self(n-3)+Self(n-4): n in [1..41]]; // G. C. Greubel, Jun 30 2022
    
  • Mathematica
    LinearRecurrence[{1,1,1,1}, {2,3,5,7}, 40] (* G. C. Greubel, Jun 30 2022 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,1,1]^(n-1)*[2;3;5;7])[1,1] \\ Charles R Greathouse IV, Nov 01 2018
    
  • SageMath
    @CachedFunction
    def a(n): # a = A100532
        if (n<5): return nth_prime(n)
        else: return sum( a(n-j) for j in (1..4))
    [a(n) for n in (1..40)] # G. C. Greubel, Jun 30 2022

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) where n >= 5 and a(1) = 2, a(2) = 3, a(3) = 5 and a(4) = 7.
G.f.: x*(1-x)*(2+3*x+3*x^2) / ( 1-x-x^2-x^3-x^4 ). - R. J. Mathar, Feb 03 2011