A100532 The first four numbers of this sequence are the primes 2,3,5,7. The other terms are calculated by adding the previous four terms.
2, 3, 5, 7, 17, 32, 61, 117, 227, 437, 842, 1623, 3129, 6031, 11625, 22408, 43193, 83257, 160483, 309341, 596274, 1149355, 2215453, 4270423, 8231505, 15866736, 30584117, 58952781, 113635139, 219038773, 422210810, 813837503, 1568722225, 3023809311, 5828579849
Offset: 1
Examples
The fifth term is 2 + 3 + 5 + 7 = 17.
Links
- Martin Burtscher, Igor Szczyrba, and RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1).
Programs
-
Magma
[n le 4 select NthPrime(n) else Self(n-1)+Self(n-2)+Self(n-3)+Self(n-4): n in [1..41]]; // G. C. Greubel, Jun 30 2022
-
Mathematica
LinearRecurrence[{1,1,1,1}, {2,3,5,7}, 40] (* G. C. Greubel, Jun 30 2022 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,1,1]^(n-1)*[2;3;5;7])[1,1] \\ Charles R Greathouse IV, Nov 01 2018
-
SageMath
@CachedFunction def a(n): # a = A100532 if (n<5): return nth_prime(n) else: return sum( a(n-j) for j in (1..4)) [a(n) for n in (1..40)] # G. C. Greubel, Jun 30 2022
Formula
a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) where n >= 5 and a(1) = 2, a(2) = 3, a(3) = 5 and a(4) = 7.
G.f.: x*(1-x)*(2+3*x+3*x^2) / ( 1-x-x^2-x^3-x^4 ). - R. J. Mathar, Feb 03 2011