A100535 Number of partitions of 2*n + 1 into parts of two kinds.
2, 10, 36, 110, 300, 752, 1770, 3956, 8470, 17490, 35002, 68150, 129512, 240840, 439190, 786814, 1386930, 2408658, 4126070, 6978730, 11664896, 19283830, 31551450, 51124970, 82088400, 130673928, 206327710, 323275512, 502810130
Offset: 0
Keywords
Examples
G.f.: 2 + 10*x + 36*x^2 + 110*x^3 + 300*x^4 + 752*x^5 + 1770*x^6 + 3956*x^7 + ... G.f.: 2*q^11 + 10*q^35 + 36*q^59 + 110*q^83 + 300*q^107 + 752*q^131 + 1770*q^155 + ... a(1)=10 because we have 3, 3', 21, 2'1, 21', 2'1', 111, 1'11, 1'1'1, 1'1'1'.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A000712.
Programs
-
Magma
m:=40; f:= func< x | 2*(&*[ ((1-x^(2*n))^2*(1-x^(8*n))^2)/((1-x^n)^5*(1-x^(4*n))) : n in [1..m+2]]) >; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( f(x) )); // G. C. Greubel, Mar 27 2023 -
Maple
with(combinat): A000712:=n->sum(numbpart(k)*numbpart(n-k),k=0..n): seq(A000712(2*n-1),n=1..32); # Emeric Deutsch, Dec 16 2004
-
Mathematica
a[n_]:= Sum[PartitionsP[k] PartitionsP[2n+1-k], {k,0,2n+1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 30 2015, adapted from Maple *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^2 * eta(x^8 + A)^2 / (eta(x + A)^5 * eta(x^4 + A)), n))} /* Michael Somos, Sep 24 2011 */
-
PARI
{a(n) = local(A); if( n<0, 0, n = 2*n + 1; A = x * O(x^n); polcoeff( 1 / eta(x + A)^2, n))} /* Michael Somos, Sep 24 2011 */
-
SageMath
m=40 def f(x): return 2*product( ((1-x^(2*n))^2*(1-x^(8*n))^2)/((1-x^n)^5*(1-x^(4*n))) for n in range(1,m+2) ) def A100535_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(x) ).list() A100535_list(m) # G. C. Greubel, Mar 27 2023
Formula
Expansion of q^(-11/24) * 2 * eta(q^2)^2 * eta(q^8)^2 / (eta(q)^5 * eta(q^4)) In powers of q. - Michael Somos, Sep 24 2011
a(n) = A000712(2*n + 1).
Extensions
More terms from Emeric Deutsch, Dec 16 2004