cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100535 Number of partitions of 2*n + 1 into parts of two kinds.

Original entry on oeis.org

2, 10, 36, 110, 300, 752, 1770, 3956, 8470, 17490, 35002, 68150, 129512, 240840, 439190, 786814, 1386930, 2408658, 4126070, 6978730, 11664896, 19283830, 31551450, 51124970, 82088400, 130673928, 206327710, 323275512, 502810130
Offset: 0

Views

Author

N. J. A. Sloane, Nov 27 2004

Keywords

Examples

			G.f.: 2 + 10*x + 36*x^2 + 110*x^3 + 300*x^4 + 752*x^5 + 1770*x^6 + 3956*x^7 + ...
G.f.: 2*q^11 + 10*q^35 + 36*q^59 + 110*q^83 + 300*q^107 + 752*q^131 + 1770*q^155 + ...
a(1)=10 because we have 3, 3', 21, 2'1, 21', 2'1', 111, 1'11, 1'1'1, 1'1'1'.
		

Crossrefs

Cf. A000712.

Programs

  • Magma
    m:=40;
    f:= func< x | 2*(&*[ ((1-x^(2*n))^2*(1-x^(8*n))^2)/((1-x^n)^5*(1-x^(4*n))) : n in [1..m+2]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!( f(x) )); // G. C. Greubel, Mar 27 2023
    
  • Maple
    with(combinat): A000712:=n->sum(numbpart(k)*numbpart(n-k),k=0..n): seq(A000712(2*n-1),n=1..32); # Emeric Deutsch, Dec 16 2004
  • Mathematica
    a[n_]:= Sum[PartitionsP[k] PartitionsP[2n+1-k], {k,0,2n+1}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 30 2015, adapted from Maple *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^2 * eta(x^8 + A)^2 / (eta(x + A)^5 * eta(x^4 + A)), n))} /* Michael Somos, Sep 24 2011 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, n = 2*n + 1; A = x * O(x^n); polcoeff( 1 / eta(x + A)^2, n))} /* Michael Somos, Sep 24 2011 */
    
  • SageMath
    m=40
    def f(x): return 2*product( ((1-x^(2*n))^2*(1-x^(8*n))^2)/((1-x^n)^5*(1-x^(4*n))) for n in range(1,m+2) )
    def A100535_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A100535_list(m) # G. C. Greubel, Mar 27 2023

Formula

Expansion of q^(-11/24) * 2 * eta(q^2)^2 * eta(q^8)^2 / (eta(q)^5 * eta(q^4)) In powers of q. - Michael Somos, Sep 24 2011
a(n) = A000712(2*n + 1).

Extensions

More terms from Emeric Deutsch, Dec 16 2004