A100537 Triangle read by rows: T(n,k) is the number of Dyck n-paths whose first descent has length k.
1, 1, 1, 3, 1, 1, 9, 3, 1, 1, 28, 9, 3, 1, 1, 90, 28, 9, 3, 1, 1, 297, 90, 28, 9, 3, 1, 1, 1001, 297, 90, 28, 9, 3, 1, 1, 3432, 1001, 297, 90, 28, 9, 3, 1, 1, 11934, 3432, 1001, 297, 90, 28, 9, 3, 1, 1, 41990, 11934, 3432, 1001, 297, 90, 28, 9, 3, 1, 1, 149226, 41990, 11934, 3432, 1001, 297, 90, 28, 9, 3, 1, 1
Offset: 1
Examples
Table begins * k..1...2...3...... n 1 |..1 2 |..1...1 3 |..3...1...1 4 |..9...3...1...1 5 |.28...9...3...1...1 6 |.90..28...9...3...1...1 7 |297..90..28...9...3...1...1 For example, UUDDUD has first descent of length 2 and T(3,1)=3 counts UUDUDD, UDUUDD, UDUDUD.
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
A100537:= func< n,k | k eq n select 1 else 3*(n-k)*Catalan(n-k)/(n-k+2) >; [A100537(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 03 2021
-
Mathematica
T[n_, k_]:= Boole[k==n] + 3*(n-k)*CatalanNumber[n-k]/(n-k+2); Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 03 2021 *)
-
Sage
def A100537(n,k): return bool(k==n) + 3*(n-k)*catalan_number(n-k)/(n-k+2) flatten([[A100537(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 03 2021
Formula
T(n, k) = Cat(n-k) - Cat(n-k-1) where (Cat(n))_{n>=0} = (1, 2, 5, 14, ...) is the convolution of the Catalan numbers A000108 with itself.
G.f.: (1-x)*y*(1 - 2*x - sqrt(1-4*x))/(2*x*(1 - x*y)).
T(n, k) = 3*(n-k)*C(n-k)/(n-k+2) + [k=n], where C(n) = A000108(n). - G. C. Greubel, May 03 2021
Comments