cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A101388 Number of n-vertex unlabeled digraphs without endpoints.

Original entry on oeis.org

1, 1, 1, 8, 137, 7704, 1413982, 855543836, 1775124241697, 12985137979651848, 340909258684048264585, 32512676857544231506934756, 11365672344040389664750137465767, 14668676509227095069116619104786898732, 70315084528883620836175544247562749711989951
Offset: 0

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 14 2005

Keywords

Crossrefs

Cf. A100548 (labeled case), A004110, A004108, A059166, A059167, A101389.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i]-1)}
    seq(n)=Vec(sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, my(d=p[i]); (1-x^d)^3 + O(x*x^(n-k))) ); x^k*s/k!)/(1-x^2)) \\ Andrew Howroyd, Jan 22 2021

Extensions

a(0)=1 prepended and terms a(7) and beyond from Andrew Howroyd, Jan 22 2021

A101389 Number of n-vertex unlabeled oriented graphs without endpoints.

Original entry on oeis.org

1, 1, 1, 3, 21, 369, 16929, 1913682, 546626268, 406959998851, 808598348346150, 4358157210587930509, 64443771774627635711718, 2636248889492487709302815665, 300297332862557660078111708007894, 95764277032243987785712142452776403618, 85885545190811866954428990373255822969983915
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jan 14 2005

Keywords

Examples

			a(3) = 3 because there are 2 distinct orientations of the triangle K_3 plus the empty graph on 3 vertices.
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    oedges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
    ographsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 3^oedges(p) * sMonomial(p)); s/n!}
    ographs(n)={sum(k=0, n, ographsCycleIndex(k)*x^k) + O(x*x^n)}
    trees(n,k)={sRevert(x*sv(1)/sExp(k*x*sv(1) + O(x^n)))}
    cycleIndexSeries(n)={my(g=ographs(n), tr=trees(n,2), tu=tr-tr^2); sSolve( g/sExp(tu), tr )*symGroupSeries(n)}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 27 2020
    
  • PARI
    \\ faster stand-alone version
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
    seq(n)={Vec(sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 3^edges(p) * prod(i=1, #p, my(d=p[i]); (1-x^d)^2 + O(x*x^(n-k))) ); x^k*s/k!)/(1-x^2))} \\ Andrew Howroyd, Jan 22 2021

Extensions

a(0)=1 prepended and terms a(9) and beyond from Andrew Howroyd, Dec 27 2020
Showing 1-2 of 2 results.