A100565 a(n) = Card{(x,y,z) : x <= y <= z, x|n, y|n, z|n, gcd(x,y)=1, gcd(x,z)=1, gcd(y,z)=1}.
1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 15, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 15, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 25, 2, 5, 8, 7, 5, 15, 2, 8, 5, 15, 2, 18, 2, 5, 8, 8, 5, 15, 2, 14, 5, 5, 2, 25, 5, 5, 5, 11, 2, 25, 5, 8, 5, 5, 5, 17
Offset: 1
Examples
From _Gus Wiseman_, May 01 2021: (Start) The a(n) triples for n = 1, 2, 4, 6, 8, 12, 24: (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,1,4) (1,1,3) (1,1,4) (1,1,3) (1,1,3) (1,1,6) (1,1,8) (1,1,4) (1,1,4) (1,2,3) (1,1,6) (1,1,6) (1,2,3) (1,1,8) (1,3,4) (1,2,3) (1,1,12) (1,3,4) (1,3,8) (1,1,12) (1,1,24) (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
The version for subsets of {1..n} instead of divisors is A015617.
The version for pairs of divisors is A018892.
The ordered version is A048785.
The strict case is A066620.
The version for strict partitions is A220377.
A version for sets of divisors of any size is A225520.
A007304 ranks 3-part strict partitions.
A014311 ranks 3-part compositions.
A014612 ranks 3-part partitions.
A051026 counts pairwise indivisible subsets of {1..n}.
A302696 lists Heinz numbers of pairwise coprime partitions.
A337461 counts 3-part pairwise coprime compositions.
Programs
-
Mathematica
pwcop[y_]:=And@@(GCD@@#==1&/@Subsets[y,{2}]); Table[Length[Select[Tuples[Divisors[n],3],LessEqual@@#&&pwcop[#]&]],{n,30}] (* Gus Wiseman, May 01 2021 *)
-
PARI
A100565(n) = (numdiv(n^3)+3*numdiv(n)+2)/6; \\ Antti Karttunen, May 19 2017
Formula
a(n) = (tau(n^3) + 3*tau(n) + 2)/6.
Comments