A100577 Number of sets of divisors of n with an odd sum.
1, 2, 2, 4, 2, 8, 2, 8, 4, 8, 2, 32, 2, 8, 8, 16, 2, 32, 2, 32, 8, 8, 2, 128, 4, 8, 8, 32, 2, 128, 2, 32, 8, 8, 8, 256, 2, 8, 8, 128, 2, 128, 2, 32, 32, 8, 2, 512, 4, 32, 8, 32, 2, 128, 8, 128, 8, 8, 2, 2048, 2, 8, 32, 64, 8, 128, 2, 32, 8, 128, 2, 2048, 2, 8, 32, 32, 8, 128, 2, 512, 16, 8, 2
Offset: 1
Examples
a(12) = #{{1}, {3}, {1,2}, {1,4}, {2,3}, {1,6}, {3,4}, {1,2,4}, {3,6}, {1,2,6}, {2,3,4}, {1,4,6}, {2,3,6}, {1,12}, {3,4,6}, {1,2,4,6}, {3,12}, {1,2,12}, {2,3,4,6}, {1,4,12}, {2,3,12}, {1,6,12}, {3,4,12}, {1,2,4,12}, {3,6,12}, {1,2,6,12}, {2,3,4,12}, {1,4,6,12}, {2,3,6,12}, {1,2,4,6,12}, {3,4,6,12}, {2,3,4,6,12}} = 32.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A100577 := proc(n) 2^(numtheory[tau](n)-1) ; end proc: seq(A100577(n),n=1..100) ; # R. J. Mathar, Nov 10 2017
-
Mathematica
Table[2^(DivisorSigma[0, n] - 1), {n, 1, 100}] (* Jean-François Alcover, Feb 13 2018 *)
-
PARI
a(n)=2^(numdiv(n)-1) \\ Charles R Greathouse IV, Jan 19 2017
Formula
a(n) = 2^(A000005(n)-1).
Comments