A100585 a(n+1) = a(n)+floor(a(n)/3), a(1) = 3.
3, 4, 5, 6, 8, 10, 13, 17, 22, 29, 38, 50, 66, 88, 117, 156, 208, 277, 369, 492, 656, 874, 1165, 1553, 2070, 2760, 3680, 4906, 6541, 8721, 11628, 15504, 20672, 27562, 36749, 48998, 65330, 87106, 116141, 154854, 206472, 275296, 367061, 489414, 652552
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..7987
- Popular Computing (Calabasas, CA), Sieves: Problem 43, Vol. 2 (No. 13, Apr 1974), pp. 6-7. This is Sieve #6 with K=4. [Annotated and scanned copy]
- Index entries for sequences generated by sieves
Programs
-
Maple
R:= 3: x:= 3: for i from 2 to 100 do x:= x + floor(x/3); R:= R,x od: R; # Robert Israel, Sep 09 2024
-
Mathematica
t = Range[3, 2500000]; r = {}; While[Length[t] > 0, AppendTo[r, First[t]]; t = Drop[t, {1, -1, 4}];]; r (* Ray Chandler, Dec 02 2004 *) NestList[#+Floor[#/3]&,3,50] (* Harvey P. Dale, Jan 14 2019 *)
-
PARI
a(n,s=3)=for(i=2,n,s+=s\3);s \\ M. F. Hasler, Oct 06 2014
Formula
a(1)=3, a(n+1) = a(n) + floor(a(n)/3). - Ben Paul Thurston, Jan 09 2008
Extensions
More terms from Ray Chandler, Dec 02 2004
Simpler definition from M. F. Hasler, Oct 06 2014
Comments