A100607 Concatenated primes of order 3.
223, 227, 233, 257, 277, 337, 353, 373, 523, 557, 577, 727, 733, 757, 773, 1123, 1153, 1327, 1373, 1723, 1733, 1753, 1777, 1933, 1973, 2113, 2137, 2213, 2237, 2243, 2267, 2273, 2293, 2297, 2311, 2333, 2341, 2347, 2357, 2371, 2377, 2383, 2389, 2417, 2437
Offset: 1
Examples
257 is in the sequence since it is made from three (distinct) primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Chris Caldwell, The First thousand primes.
Programs
-
Maple
filter:= proc(n) local m, i, j, ni, nj, np, n3; if not isprime(n) then return false fi; m:= ilog10(n); for i from 1 to m-1 do ni:= n mod 10^i; if ni < 10^(i-1) or not isprime(ni) then next fi; np:= (n-ni)/10^i; for j from 1 to m-i do nj:= np mod 10^j; if nj < 10^(j-1) then next fi; n3:= (np-nj)/10^j; if isprime(nj) and isprime(n3) then return true fi; od od; false end proc; select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Apr 28 2025
-
Mathematica
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) t = Sort[ KSubsets[ Flatten[ Table[ Prime[ Range[25]], {3}]], 3]]; lst = {}; Do[k = 1; u = Permutations[t[[n]]]; While[k < Length[u], v = FromDigits[ Flatten[ IntegerDigits /@ u[[k]]]]; If[ PrimeQ[v], AppendTo[lst, v]]; k++ ], {n, Length[t]}]; Take[ Union[lst], 45] (* Robert G. Wilson v, Dec 03 2004 *)
Formula
Each of the listed primes is made from three primes (same or different).
Extensions
Corrected and extended by Robert G. Wilson v, Dec 03 2004
Comments