cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100607 Concatenated primes of order 3.

Original entry on oeis.org

223, 227, 233, 257, 277, 337, 353, 373, 523, 557, 577, 727, 733, 757, 773, 1123, 1153, 1327, 1373, 1723, 1733, 1753, 1777, 1933, 1973, 2113, 2137, 2213, 2237, 2243, 2267, 2273, 2293, 2297, 2311, 2333, 2341, 2347, 2357, 2371, 2377, 2383, 2389, 2417, 2437
Offset: 1

Views

Author

Parthasarathy Nambi, Nov 30 2004

Keywords

Comments

This is a subset of all concatenated primes (A019549). Some of these primes have dual order - example 223. It can be viewed as order two(2 and 23) or as order three (2,2 and 3).
There are 15 such numbers less than 1000 and 202 less than 10^4. - Robert G. Wilson v, Dec 03 2004

Examples

			257 is in the sequence since it is made from three (distinct) primes.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local m, i, j, ni, nj, np, n3;
     if not isprime(n) then return false fi;
     m:= ilog10(n);
     for i from 1 to m-1 do
       ni:= n mod 10^i;
       if ni < 10^(i-1) or not isprime(ni) then next fi;
       np:= (n-ni)/10^i;
       for j from 1 to m-i do
         nj:= np mod 10^j;
         if nj < 10^(j-1) then next fi;
         n3:= (np-nj)/10^j;
         if  isprime(nj) and isprime(n3) then return true fi;
     od od;
     false
    end proc;
    select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Apr 28 2025
  • Mathematica
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) t = Sort[ KSubsets[ Flatten[ Table[ Prime[ Range[25]], {3}]], 3]]; lst = {}; Do[k = 1; u = Permutations[t[[n]]]; While[k < Length[u], v = FromDigits[ Flatten[ IntegerDigits /@ u[[k]]]]; If[ PrimeQ[v], AppendTo[lst, v]]; k++ ], {n, Length[t]}]; Take[ Union[lst], 45] (* Robert G. Wilson v, Dec 03 2004 *)

Formula

Each of the listed primes is made from three primes (same or different).

Extensions

Corrected and extended by Robert G. Wilson v, Dec 03 2004