cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A101218 Primes that are a concatenation of 2, 3 and a prime.

Original entry on oeis.org

233, 2311, 2341, 2347, 2371, 2383, 2389, 23131, 23167, 23173, 23197, 23227, 23251, 23269, 23293, 23311, 23431, 23509, 23557, 23563, 23593, 23599, 23677, 23719, 23743, 23761, 23773, 23827, 23857, 23887, 23911, 23929, 23971, 23977, 231019
Offset: 1

Views

Author

Parthasarathy Nambi, Dec 14 2004

Keywords

Examples

			233 is a prime concatenated from the primes 2,3 and 3
2311 is a prime concatenated from the primes 2,3 and 11
		

Crossrefs

Programs

  • Mathematica
    Select[23*10^IntegerLength[#]+#&/@Prime[Range[200]],PrimeQ] (* Harvey P. Dale, Jun 09 2013 *)

Extensions

Extended by Ray Chandler, Dec 22 2004

A101219 Primes that are a concatenation of 3, 5 and a prime.

Original entry on oeis.org

353, 3511, 3517, 3529, 3541, 3547, 3559, 3571, 3583, 35107, 35149, 35227, 35251, 35257, 35281, 35311, 35317, 35353, 35401, 35419, 35449, 35461, 35491, 35509, 35521, 35569, 35593, 35617, 35677, 35797, 35809, 35839, 35863, 35911, 35977
Offset: 1

Views

Author

Parthasarathy Nambi, Dec 14 2004

Keywords

Examples

			3511 is a prime concatenated from the primes 3, 5 and 11.
		

Crossrefs

Programs

  • Mathematica
    Select[35*10^IntegerLength[#]+#&/@Prime[Range[200]],PrimeQ] (* Harvey P. Dale, Jan 23 2019 *)

Extensions

Extended by Ray Chandler, Dec 22 2004

A101249 Primes that are a concatenation of 5, 7 and a prime.

Original entry on oeis.org

577, 5711, 5717, 5737, 5741, 5743, 5779, 5783, 57107, 57131, 57139, 57149, 57163, 57173, 57179, 57191, 57193, 57223, 57241, 57251, 57269, 57271, 57283, 57331, 57347, 57349, 57367, 57373, 57383, 57389, 57397, 57457, 57467, 57487, 57503
Offset: 1

Views

Author

Parthasarathy Nambi, Dec 16 2004

Keywords

Examples

			5711 is a prime concatenated from the primes 5,7 and 11.
		

Crossrefs

Programs

  • Mathematica
    Select[ Table[ FromDigits[ Flatten[ IntegerDigits /@ {5, 7, Prime[n]}]], {n, 100}], PrimeQ[ # ] &] (* Robert G. Wilson v, Dec 20 2004 *)

Extensions

Extended by Ray Chandler and Robert G. Wilson v, Dec 22 2004

A101250 Primes that are a concatenation of 7, 11 and a prime.

Original entry on oeis.org

71119, 71129, 71143, 71147, 71153, 71161, 71167, 71171, 711131, 711163, 711173, 711181, 711223, 711307, 711317, 711353, 711397, 711409, 711463, 711479, 711499, 711509, 711523, 711563, 711577, 711617, 711653, 711691, 711701, 711709, 711727
Offset: 1

Views

Author

Parthasarathy Nambi, Dec 16 2004

Keywords

Examples

			71119 is a prime concatenated from the primes 7, 11 and 19.
		

Crossrefs

Programs

  • Mathematica
    Select[ Table[ FromDigits[ Flatten[ IntegerDigits /@ {7, 11, Prime[n]}]], {n, 130}], PrimeQ[ # ] &] (* Robert G. Wilson v, Dec 20 2004 *)

Extensions

Extended by Ray Chandler and Robert G. Wilson v, Dec 22 2004

A100633 Primes that are the decimal concatenation of three separate primes.

Original entry on oeis.org

257, 523, 1123, 1153, 1327, 1373, 1723, 1753, 1973, 2113, 2137, 2237, 2293, 2297, 2311, 2341, 2347, 2357, 2371, 2377, 2383, 2389, 2417, 2437, 2473, 2477, 2531, 2543, 2579, 2593, 2617, 2677, 2711, 2713, 2719, 2729, 2731, 2741, 2753, 2767, 2789, 2797
Offset: 1

Views

Author

Robert G. Wilson v, Dec 03 2004

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n) local m,i,j,ni,nj,np,n3;
     if not isprime(n) then return false fi;
     m:= ilog10(n);
     for i from 1 to m-1 do
       ni:= n mod 10^i;
       if ni < 10^(i-1) or not isprime(ni) then next fi;
       np:= (n-ni)/10^i;
       for j from 1 to m-i do
         nj:= np mod 10^j;
         if nj < 10^(j-1) then next fi;
         n3:= (np-nj)/10^j;
         if nops({ni,nj,n3})=3 and isprime(nj) and isprime(n3) then return true fi;
     od od;
     false
    end proc;
    select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Apr 28 2025
  • Mathematica
    (*first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) t = KSubsets[ Prime[ Range[25]], 3]; lst = {}; Do[k = 1; u = Permutations[ t[[n]]]; While[k < 7, v = FromDigits[ Flatten[IntegerDigits /@ u[[k]]]]; If[ PrimeQ[v], AppendTo[lst, v]]; k++ ], {n, Binomial[25, 3]}]; Take[ Union[lst], 42]

Extensions

Edited by Charles R Greathouse IV, Apr 29 2010

A383195 Primes that are the concatenation of three primes, of which two are equal.

Original entry on oeis.org

223, 227, 233, 277, 337, 353, 373, 557, 577, 727, 733, 757, 773, 1733, 1777, 1933, 2213, 2237, 2243, 2267, 2273, 2297, 2333, 2377, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3413, 3433, 3533, 3593, 3613, 3673, 3733, 3793, 3833, 4133, 4177, 4733, 5333, 5519, 5531, 5573
Offset: 1

Views

Author

Robert Israel, Apr 28 2025

Keywords

Comments

Complement of A100633 in A100607.

Examples

			a(3) = 233 is a term because 233 is prime and is the concatenation of the primes 2, 3 and 3, of which two are equal.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local m, i, j, ni, nj, np, n3;
     if not isprime(n) then return false fi;
     m:= ilog10(n);
     for i from 1 to m-1 do
       ni:= n mod 10^i;
       if ni < 10^(i-1) or not isprime(ni) then next fi;
       np:= (n-ni)/10^i;
       for j from 1 to m-i do
         nj:= np mod 10^j;
         if nj < 10^(j-1) then next fi;
         n3:= (np-nj)/10^j;
         if nops({ni, nj, n3})<3 and isprime(nj) and isprime(n3) then return true fi;
     od od;
     false
    end proc:
    select(filter, [seq(i,i=3..10000,2)]);

A276803 Semiprimes k such that the concatenation of its prime factors is prime.

Original entry on oeis.org

6, 21, 22, 33, 39, 46, 51, 58, 82, 93, 111, 115, 133, 141, 142, 159, 166, 177, 187, 201, 205, 219, 226, 235, 237, 247, 249, 253, 262, 267, 274, 291, 301, 319, 327, 355, 358, 391, 411, 427, 478, 489, 501, 502, 505, 511, 535, 538, 543, 562, 565, 573, 583, 586, 589
Offset: 1

Views

Author

K. D. Bajpai, Sep 17 2016

Keywords

Comments

Alternatively: Semiprimes p*q, with p
Corresponding primes are at A105184.

Examples

			21 is a term because 21 = 3 * 7 that is a semiprime : concatenation of 3 and 7 = 37  which is prime.
142 is a term because 142 = 2 * 71 that is a semiprime : concatenation of 2 and 71 = 271 which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[1000], PrimeOmega[#] == 2 &], PrimeQ[FromDigits[Join[IntegerDigits [First@First[FactorInteger[#]]], IntegerDigits[First@Last[FactorInteger[#]]]]]] &]
    Select[Range[1000],PrimeOmega[#]==PrimeNu[#]==2&&PrimeQ[FromDigits[ Flatten[ IntegerDigits/@FactorInteger[#][[All,1]]]]]&] (* Harvey P. Dale, Aug 03 2022 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim\2, forprime(q=2, min(p,lim\p), if(isprime(eval(Str(q,p))), listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Sep 17 2016
Showing 1-7 of 7 results.