cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100634 a(n) is the decimal equivalent of the binary number whose k-th least significant bit is 1 iff k is a prime number and k <= n.

Original entry on oeis.org

0, 2, 6, 6, 22, 22, 86, 86, 86, 86, 1110, 1110, 5206, 5206, 5206, 5206, 70742, 70742, 332886, 332886, 332886, 332886, 4527190, 4527190, 4527190, 4527190, 4527190, 4527190, 272962646, 272962646, 1346704470, 1346704470, 1346704470, 1346704470, 1346704470
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 02 2004

Keywords

Comments

1 is not considered prime. If 1 were to be considered prime, each term would be incremented by 1.

Examples

			a(5) = 22 because the k-th least significant bits 1,2,3,4,5 are prime for 2,3,5 and not prime for 1,4. So k=1->0, k=2->1, k=3->1, k=4->0 and k=5->1 gives the bit sequence 10110, which is 2 + 4 + 16 = 22 in its decimal expansion.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          a(n-1)+`if`(isprime(n), 2^(n-1), 0))
        end:
    seq(a(n), n=1..35);  # Alois P. Heinz, Apr 01 2024
  • Mathematica
    Table[FromDigits[Reverse[Table[If[PrimeQ[k] == True, 1, 0], {k, 1, N}]], 2], {N, 1, 40}]
    FoldList[Plus, If[PrimeQ[#], 2^#/2, 0] & /@ Range@40] (* David Dewan, Apr 01 2024 *)
  • PARI
    Sum(an)={ L=#binary(an)-1; k=2; s=0; pow2=2;
    forstep(j=L, 2, -1,
    if(isprime(k), s+=pow2);
    k++; pow2*=2);
    return(s) };
      n=1; an=0;
    while(an<=1346704470,
      an+=Sum(an); print1(an,", "); n++;
      while(!isprime(n), print1(an,", "); n++);
      an=2^(n-1)
    ) \\ Washington Bomfim, Jan 17 2011