A100638 Successive powers of the matrix A=[1,2;3,4] written by rows in groups of 4.
1, 2, 3, 4, 7, 10, 15, 22, 37, 54, 81, 118, 199, 290, 435, 634, 1069, 1558, 2337, 3406, 5743, 8370, 12555, 18298, 30853, 44966, 67449, 98302, 165751, 241570, 362355, 528106, 890461, 1297782, 1946673, 2837134, 4783807, 6972050, 10458075
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 5, 0, 0, 0, 2).
Programs
-
Maple
a:= proc(n) local r, m; (<<1|2>, <3|4>>^iquo(n+3, 4, 'r'))[iquo(r+2, 2, 'm'), m+1] end: seq(a(n), n=1..50); # Alois P. Heinz, Dec 01 2008
-
Mathematica
LinearRecurrence[{0, 0, 0, 5, 0, 0, 0, 2}, {1, 2, 3, 4, 7, 10, 15, 22}, 50] (* Jean-François Alcover, May 18 2018, after R. J. Mathar *)
-
PARI
A100638(n)=([1,2;3,4]^((n-1)\4+1))[(n-1)%4\2+1,2-n%2] /* M. F. Hasler, Dec 01 2008 */
Formula
a(4n-3) = A124610(n), a(4n-2) = 2 A015535(n), a(4n-1) = 3 A015535(n), a(4n) = a(4n-3) + a(4n-1). - M. F. Hasler, Dec 01 2008
a(n) = 5*a(n-4)+2*a(n-8). a(4n+1)=A124610(n+1), n>=0. G.f.: x*(1+2x+3x^2+4x^3+2x^4+2x^7) / (1-5x^4-2x^8). - R. J. Mathar, Dec 04 2008
Comments