cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100655 Triangle read by rows giving coefficients in Bernoulli polynomials as defined in A001898, after multiplication by the common denominators A001898(n).

Original entry on oeis.org

1, 0, -1, 0, -1, 3, 0, 0, 1, -1, 0, 2, 5, -30, 15, 0, 0, -2, -5, 10, -3, 0, -16, -42, 91, 315, -315, 63, 0, 0, 16, 42, -7, -105, 63, -9, 0, 144, 404, -540, -2345, -840, 3150, -1260, 135, 0, 0, -144, -404, -100, 665, 448, -630, 180, -15, 0, -768, -2288, 2068, 11792, 8195, -8085, -8778, 6930, -1485, 99
Offset: 0

Views

Author

N. J. A. Sloane, Dec 05 2004

Keywords

Comments

Let p(n, x) = Sum_{k=0..n} T(n, k)*x^k, then the polynomials (-1)^n*p(n; x)/x are called 'Stirling polynomials' by Knuth et al. (CMath, eq. 6.45). - Peter Luschny, Feb 05 2021

Examples

			The Bernoulli polynomials B(0)(x) through B(6)(x) are:
        1
    -(1/2)* x
    (1/12)*(3*x - 1)*x
    -(1/8)*(x-1)*x^2
   (1/240)*(15*x^3 - 30*x^2 + 5*x + 2)*x
   -(1/96)*(x-1)*(3*x^2 - 7*x - 2)*x^2
  (1/4032)*(63*x^5 - 315*x^4 + 315*x^3 + 91*x^2 - 42*x - 16)*x
Triangle of coefficients starts:
[0] [1],
[1] [0,  -1],
[2] [0,  -1,   3],
[3] [0,   0,   1,   -1],
[4] [0,   2,   5,  -30,    15],
[5] [0,   0,  -2,   -5,    10,   -3],
[6] [0, -16, -42,   91,   315, -315,   63],
[7] [0,   0,  16,   42,    -7, -105,   63,    -9],
[8] [0, 144, 404, -540, -2345, -840, 3150, -1260, 135].
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 1st ed.; Addison-Wesley, 1989, p. 257.

Crossrefs

Programs

  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(simplify(p),x)):
    E2 := (n, k) -> combinat[eulerian2](n, k): m := n -> mul(j-x, j = 1..n):
    Epoly := n -> simplify(expand(add(E2(n, k)*binomial(x+k,2*n), k = 0..n)/m(n))):
    poly := n -> Epoly(n)*denom(Epoly(n)):
    seq(print(CoeffList(poly(n))), n = 0..8); # Peter Luschny, Feb 05 2021
  • Mathematica
    row[n_] := NorlundB[n, x] // Together // Numerator // CoefficientList[#, x]&; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 06 2019, after Peter Luschny *)
  • Sage
    # Formula (83), page 146 in Nörlund.
    @cached_function
    def NoerlundB(n, x):
        if n == 0: return 1
        return expand((-x/n)*add((-1)^k*binomial(n,k)*bernoulli(k)*NoerlundB(n-k,x) for k in (1..n)))
    def A100655_row(n): return numerator(NoerlundB(n, x)).list()
    [A100655_row(n) for n in (0..8)] # Peter Luschny, Jul 01 2019

Formula

E.g.f.: (y/(exp(y)-1))^x. - Vladeta Jovovic, Feb 27 2006
Let p(n, x) = (Sum_{k=0..n} E2(n, k)*binomial(x + k, 2*n))/(Product_{j=1..n} (j-x)), where E2 are the second-order Eulerian numbers (A201637), then T(n, k) = [x^k] M(n+1)*p(n, x), where M(n) are the Minkowski numbers (A053657). - Peter Luschny, Feb 05 2021