A100671 A Graham-Pollak-like sequence with multiplier 3 instead of 2.
1, 2, 4, 7, 12, 21, 37, 64, 111, 193, 335, 581, 1007, 1745, 3023, 5236, 9069, 15708, 27207, 47124, 81622, 141374, 244867, 424122, 734601, 1272367, 2203805, 3817103, 6611417, 11451311, 19834253, 34353934, 59502759, 103061802, 178508278, 309185407, 535524834
Offset: 0
Keywords
Examples
a(9) = 193 because a(8) = 111; so a(9) = Floor(Sqrt(3*111*(111+1))) = floor(sqrt(37296)) = 193, which happens to be prime.
References
- Borwein, J. and Bailey, D., Mathematics by Experiment: Plausible Reasoning in the 21st Century. Natick, MA: A. K. Peters, 2003.
Links
- R. L. Graham and H. O. Pollak, Note on a nonlinear recurrence related to sqrt(2), Mathematics Magazine, Volume 43, Pages 143-145, 1970. Zbl 201.04705.
- Eric Weisstein's World of Mathematics, Graham-Pollak sequence
Programs
-
Mathematica
RecurrenceTable[{a[0]==1,a[n]==Floor[Sqrt[3a[n-1](a[n-1]+1)]]},a[n],{n,40}] (* Harvey P. Dale, Sep 10 2011 *)
Formula
a(0) = 1, a(n) = Floor(Sqrt(3*a(n-1)*(a(n-1)+1))).
Extensions
Corrected and extended by Harvey P. Dale, Sep 10 2011
Comments