A100673 A Graham-Pollak-like sequence with cube root instead of square root.
1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 34, 44, 56, 71, 90, 114, 144, 182, 230, 291, 367, 463, 584, 737, 929, 1171, 1476, 1860, 2344, 2954, 3723, 4691, 5911, 7448, 9385, 11825, 14899, 18772, 23652, 29800, 37546, 47306, 59603, 75096, 94616, 119209, 150195, 189235
Offset: 0
Examples
a(6) = 11 because a(5) = 8; so a(6) = Floor((2*8*(8+1)*(8+2))^(1/3)) = floor(1440^(1/3)) = 11, which happens to be prime. a(45) = 119209 because a(44) = 94616, so a(45) = Floor((2*94616*(94616+1)*(94616+2))^(1/3)) = floor(1694094050176992^(1/3)) = 119209 = 23 * 71 * 73, which happens to be a 3-brilliant number.
References
- Borwein, J. and Bailey, D., Mathematics by Experiment: Plausible Reasoning in the 21st Century. Natick, MA: A. K. Peters, 2003.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- R. L. Graham and H. O. Pollak, Note on a nonlinear recurrence related to sqrt(2), Mathematics Magazine, Volume 43, Pages 143-145, 1970. Zbl 201.04705.
- Eric Weisstein's World of Mathematics, Graham-Pollak sequence
Programs
-
Mathematica
NestList[Floor[Surd[2#(#+1)(#+2),3]]&,1,50] (* Harvey P. Dale, Feb 24 2016 *)
Formula
a(0) = 1, a(n) = Floor((2*a(n-1)*(a(n-1)+1)*(a(n-1)+2))^(1/3))
Comments