cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100684 Number of partitions of 2n free of multiples of 8 such that 4 occurs at most once. All odd parts occur with even multiplicities. There is no restriction on the other even parts.

Original entry on oeis.org

1, 2, 4, 8, 12, 20, 32, 48, 72, 106, 152, 216, 305, 422, 580, 792, 1068, 1432, 1908, 2520, 3313, 4332, 5628, 7280, 9373, 12008, 15324, 19480, 24661, 31112, 39120, 49016, 61229, 76260, 94692, 117264, 144834, 178412, 219244, 268784, 328746
Offset: 0

Views

Author

Noureddine Chair, Jan 27 2005

Keywords

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 12*x^4 + 20*x^5 + 32*x^6 + 48*x^7 + 72*x^8 + ...
		

Crossrefs

Cf. A080054.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[(1-x^4)*Product[(1+x^(2*k))/(1-x^(2*k-1))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 06 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( (1 - x^4) * eta(x^4 + A) * eta(x^2 + A) / eta(x + A)^2, n))}; /* Michael Somos, Feb 10 2005 */

Formula

G.f.: (1-x^4)*Product((1+x^(2*i))/(1-x^(2*i-1))^2, i=1..infinity). [Vladeta Jovovic]
Expansion of (1 - q^4) * q^(-1/6) * eta(q^4) * eta(q^2) / eta(q)^2 in powers of q.
G.f.: (1-x^4) * Prod_{k>0} (1 + x^(2*k)) * (1 + x^k)^2. - Michael Somos, Feb 10 2005
a(n) ~ 5^(3/4) * Pi * exp(Pi*sqrt(5*n/6)) / (2^(11/4) * 3^(3/4) * n^(5/4)). - Vaclav Kotesovec, Sep 06 2015

Extensions

Corrected by Vladeta Jovovic, Feb 01 2005
Typo in PARI program fixed by Vaclav Kotesovec, Sep 06 2015